Quantcast
Channel: Les poissons n'existent pas
Viewing all 106 articles
Browse latest View live

Le suicide du criquet, une aubaine pour la forêt

$
0
0

Encore un insecte qui a perdu la tête. Après avoir frénétiquement exploré les alentours jusqu’à la découverte d’une rivière, voilà que le criquet s’y précipite, lui qui n’est pas aquatique pour un sou. Drôle d’idée quand on ne sait pas nager. Serait-ce un acte de bravoure et de dévotion de sa part sachant son rôle potentiellement prépondérant sur la communauté des autres insectes de la forêt, et… sur le maintien d’une espèce de truite menacée ? Heu, mais c’est quoi ce long ver immonde qui s’extirpe onduleusement de l’anus de notre criquet ??

Le criquet vient de sauter dans l'eau. S'extirpe ensuite un long ver de son anus (Source)



Encore une histoire de zombies…    


Avant d’évoquer les conséquences d’un tel geste pour son entourage, un petit rembobinage express s’impose pour comprendre ce qui a poussé notre compère à commettre cet acte désespéré.  

L’histoire commence dans la rivière même, bien loin de notre suicidaire. Parmi la faune foisonnante, on rencontre des nématomorphes, de longs vers de plusieurs dizaines de centimètres, ondulant gracieusement (ou diaboliquement, c’est selon). Ces animaux sont des parasitoïdes, autrement dit ils se développent dans d’autres organismes avec, contrairement aux parasites, une forte tendance à tuer ces derniers… Qui plus est, les nématomorphes disposent d’un cycle de vie complexe, impliquant donc plusieurs hôtes. Les larves vont d’abord infester des insectes que l’on trouve dans l’eau, comme des larves d’éphémères. Alors que ces dernières vont ensuite se transformer, le ver va survivre au processus et pouvoir alors accéder au milieu terrestre. Comme tout se recycle, notre éphémère, même mort, se fera grignoter par quelqu’autre insecte, parmi lesquels des criquets ! Ensuite, l’histoire ressemble drôlement à celle de nos parasites manipulateurs, créatures zombifiantes à qui j’ai récemment consacré tout un article. Si le nématomorphe lorgne le milieu aquatique, nécessaire pour l’achèvement de son cycle et notamment sa reproduction, le criquet a malheureusement pour ce dernier une vie terrestre. Le parasitoïde semble adopter une stratégie plutôt payante pour lui : il prend le contrôle du criquet !

Ca commence par des symptômes assez inquiétants, le criquet se mettant à être beaucoup plus explorateur qu’à la normale, tout en étant, et contrairement à son habitude, subitement attiré par la lumière (Ponton et al. 2011). Pour comprendre les mécanismes impliqués dans les changements de comportements, l’équipe de Biron (2008) a mené une investigation protéomique, mettant en évidence ce qu’il se passe concrètement dans la tête du criquet quand il perd les pédales. Sans surprise, une des protéines dont l’expression est altérée au moment du changement de comportement du criquet dispose justement des domaines classiquement impliqués dans le système visuel. Et puis une fois la source d’eau détectée, le criquet saute dedans, ni plus ni moins. Les chiffres sont impressionnants. Par exemple, Sanchez et ses collaborateurs (2008) ont montré que 80% des criquets Nemobius sylvestris infectés par le nématomorphe Paragordius tricuspidatus se jettent à l’eau, contre 10% chez les individus sains (de corps, mais apparemment pas d’esprit…). Les nématomorphes du genre Gordionus, quant à eux, augmentent de 20 fois les chances qu’un criquet finisse dans l’eau (Sato et al. 2011a). Pour les criquets qui ont la chance d‘échapper à la noyade, mais aussi de survivre à l’extirpation du ver par leur anus, le comportement reviendra progressivement à la normal (Ponton et al. 2011). Quant au nématomorphe, l’idée est de s’extirper de l’insecte avant que celui-ci, dans sa vaine panique, n’attire des prédateurs. Et dans le cas où ver et criquet finissent ensemble dans un estomac, le combat n’est pas perdu pour le parasitoïde qui va utiliser ses talents d’extirpation, mais en s’échappant cette fois par la bouche du prédateur… 




Pour voir d’autres vidéos, notamment un nématomorphe ressortant d’une grenouille, un petit tour sur cet article de SSAFT. Et puis par ici pour une touche d'humour.


L’effet papillon


De nombreuses études ont montré que les parasites et parasitoïdes, malgré l’image négative que le grand public leur alloue, sont souvent d’une grande importance dans l’écosystème. Dans l’exemple des criquets, l’idée la plus intuitive serait que les nématomorphes pourraient avoir un impact sur la dynamique de population des criquets. Mais c’est à une autre échelle que l’on va se pencher maintenant : celle de l’écosystème tout entier.

Faisons un petit tour au Japon où Sato et ses collaborateurs ont étudié (et étudient encore) de très près le rôle des nématomorphes du genre Gordionus. Là-bas vit la truite Salvenicus leucomaenis japonicus, menacée par la surpêche et la destruction de son habitat. Or, les scientifiques se sont vite rendus compte que si un criquet dans l’eau est nécessaire pour le nématomorphe, cela constitue également une aubaine pour les habitants de la rivière, et notamment notre truite. Sato et ses collaborateurs (2011a) ont donc entrepris de mesurer la contribution énergétique apportée par les criquets aux truites. Le résultat est impressionnant : les criquets constitueraient 60% de l’apport de calories annuel des truites, une part très loin d’être négligeable, pouvant même contribuer à la persistance de l’espèce. De plus, cette importance n’est pas qu’une question de proportion puisque d’une part les criquets augmentent la masse totale de nourriture ingérée (les truites mangent moins quand il n’y a pas de criquets dans l’eau), et d’autre part la quantité de nourriture ingérée par les truites est directement corrélée à l’importance de la présence en nématomorphes aux alentours, mais curieusement pas corrélée à la présence des criquets sur les rebords de la rivière, preuve de l’importance du parasitoïde. De plus, la présence de nématomorphes est plus faible dans les plantations de conifères qui remplacent petit à petit les forêts natives (Sato et al. 2011b). Le changement de type de forêt pourrait donc avoir comme conséquence indirecte une diminution de la population de truites, par l’intermédiaire seul de la diminution de la population de nématomorphes…

Cycle de vie du nématomorphe et flux d’énergie autour de la truite. D’après Sato et al. 2011a.


Enfin, élargissons notre champ d’investigations. Les criquets constituent une aubaine pour la truite, notamment puisqu’ils sont des proies faciles, se mouvant maladroitement dans l’eau quand ils ne sont pas déjà morts. La truite va donc délaisser les autres proies potentielles, qui elles sont plus adaptées au milieu aquatique (et donc fichtrement plus fourbes à attraper). Des insectes dont la larve est aquatique, notamment, vont ainsi voir leur succès de passage à la vie terrestre augmenter grâce au répit assuré par les criquets. Ephémères et demoiselles par exemple, vont ainsi pouvoir se métamorphoser, migrant de la rivière vers la forêt, et permettant une présence de proies pour les animaux terrestres. Le tout sans compter que l’écosystème de la rivière est lui aussi chamboulé. Le répit laissé aux invertébrés aquatiques mène également à une diminution de la biomasse en algues, alors plus consommées par ces derniers, bousculant ainsi le flux d’énergie à l’échelle de la rivière toute entière (Sato et al. 2012).


Effet en cascade de la présence de criquets dans la rivière, sur les poissons, les invertébrés aquatiques et les ressources organiques. D’après Sato et al. 2012.


Quand on regarde l’ensemble du tableau, on a l’écosystème de toute une forêt, incluant la rivière, modulé par un ver à priori insignifiant et cantonné dans un autre organisme. Cet effet papillon est tel que Sato et ses collègues ont publié, en début d’année, une étude portant sur le rétablissement à long terme d’une forêt en lien avec les populations de criquets et des nématomorphes. De quoi observer parasites et parasitoïdes d’un tout nouvel œil…



Bibliographie


Biron, D.G., Ponton, F., Marché, L., Galeotti, N., Renault, L., Demey-Thomas, E., Poncet, J., Brown, S.P., Jouin, P. & Thomas, F. 2006. « Suicide » of crickets harbouring hairworms: a proteomics investigation. Insect Molecular Biology, 15, 731-742.

Ponton, F., Otalora-Luna, F., Lefèvre, T. Guerin, P., Lebarbenchon, C., Duneau, D., Biron, D.G. & Thomas, F. 2011. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behavioral Ecology, 22, 392-400.

Sanchez, M.I., Ponton, F., Schmidt-Rhaesa, A., Hughes, D.P., Missé, D. & Thomas, F. 2008. Two steps to suicide in crickets harbouring hairworms. Animal Behaviour, 76, 1621-1624.

Sato, T., Watanabe, K., Kanaiwa, M., Niizuma, Y., Harada, Y. & Lafferty, K.D. 2011a. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology, 91, 201-207.

Sato, T., Watanabe, K., Tokuchi, N., Kamauchi, H., Harada, Y. & Lafferty, K.D. 2011b. A nematomorph parasite explains variation in terrestrial subsidies to trout streams in Japan. Oikos, 120, 1596-1599.

Sato, T., Egusa, T., Fukushima, K., Oda, T., Ohte, N., Tokuchi, N., Watanabe, K., Kanaiwa, M., Murakami, I. & Lafferty, K. 2012. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts. Ecology Letters, 15, 786-793.

Sato, T., Watanabe, K., Fukischima, K. & Tokuchi, N. 2014. Parasites and forest chronosequence: Long-term recovery of nematomorph parasites after clear-cut logging. Forest Ecology and Management, 314, 166-171.



Sophie Labaude


Entourloupes naturalistes : les lapins, des rongeurs imposteurs

$
0
0


(Crédits)

C'est une vérité qui est encore largement ignorée par le grand public, malgré les efforts de quelques émissions animalières à ce sujet. Pas plus tard que la semaine dernière, alors que j'allais tranquillement acheter des bestioles aquatiques pour mes étudiants, je suis tombée devant ces magnifiques lapereaux, tout petits et tout curieux. Placés dans un enclos à ciel ouvert, ils pointaient leurs museaux vers les visiteurs, leurs yeux grands ouverts et leurs petites oreilles tombantes, dans une vile invitation à se faire caresser... Au dessus de l'enclos, un petit panneau priait les visiteurs de ne pas toucher les rongeurs. Une invitation cette fois aux initiés de braver le faux interdit ! Et pour cause : les lapins, tout comme leurs cousins lièvres, ne sont pas des rongeurs.

Je vois déjà venir les propriétaires de lapins, pattes de meubles à l'appui, pour me prouver que leurs petits démons sont pourtant bien des maîtres dans l'art de ronger. Avant de lever les boucliers, une petite chose que vous devez savoir. Le terme "rongeur" ne désigne pas une simple habitude alimentaire. Les rongeurs constituent un groupe (on parle d'un ordre) de mammifères liés par un ancêtre commun. Ainsi, la plupart des rongeurs rongent, mais ne pas ronger n'exclue pas un animal de l'ordre des rongeurs, et inversement ! C'est exactement la même chose que pour le groupe des carnivores : le panda géant fait partie des carnivores alors qu'il se nourrit exclusivement de bambous, tandis que bien des animaux (mammifères ou non par ailleurs) ont un régime alimentaire de type carnivore sans faire partie de cet ordre. Pour ne pas s’emmêler les pinceaux, les scientifiques nous laissent les noms vernaculaires, et utilisent plutôt des noms latins, comme « Carnivora ». Si la signification est la même, la désignation est en revanche beaucoup plus explicite ! Et puis ça permet d’avoir un nom valable à l’échelle internationale, ce qui est d’un avantage certain pour que les scientifiques du monde entier puissent se comprendre.


Des carnivores qui sont végétariens ou des mangeurs de fourmis qui ne font pas partie du groupe des insectivores (groupe contesté à l’heure actuelle) : attention à la distinction entre les caractéristiques d’un animal, tel que son régime alimentaire, et le groupe auquel son espèce appartient ! (Crédits : panda, fourmilier)


Revenons à nos lapins. Ces derniers appartiennent en fait au groupe des "lagomorphes", qui contient également les lièvres (lagomorphe signifie littéralement "de la forme d'un lièvre") et des créatures moins connues, si ce n'est sous leur forme jaune et électrique, les pikas. Force est tout de même de constater qu'un lapin et un cochon d'inde (qui lui est bien un rongeur), ça se ressemble fichtrement. Et pour cause, les deux groupes auxquels ils appartiennent sont étroitement liés. Les rongeurs et les lagomorphes sont les seuls représentants encore vivants du groupe des anagalides. Ces deux groupes sont donc plus proches entre eux qu'avec les autres animaux, d'où les confusions fréquentes. Sans compter que le nom de lagomorphe est un brin plus barbare à retenir que rongeur.


Bien que les créateurs des Pokémons aient démenti l’affirmation, certains fans aiment penser que le pika, ce drôle d’animal, aurait inspiré le célèbre ami jaune et électrique de Sasha (Crédits)


C'est du côté de leur denture que se trouve une particularité bien reconnaissable, qui distingue rongeurs et lagomorphes. Ces derniers cachent une deuxième paire d'incisives, directement derrière la première. Non pas comme nous avons nos molaires derrière nos incisives. Non, littéralement derrières : ils ont deux paires d'incisives sur deux rangées différentes. Voyez plutôt.


Sur ce crâne de lièvre, on voit très bien la présence de petites incisives derrières les plus grandes, sur la mâchoire supérieure (Crédits)

Les lagomorphes disposent d’une autre particularité, cette fois au niveau de leur intestin. Un cæcum (première partie du colon) particulièrement développé leur permet en effet une digestion très efficace de la cellulose, via l’action de bactéries. Ce cæcum est notamment l’endroit où sont produites ces crottes qu’ils ont l’habitude de ravaler… Un apport non négligeable de protéines bactériennes qui explique les tendances gustatives déroutantes des lapins ! Cette habitude alimentaire, la cæcotrophie, est à rapprocher de la rumination des vaches. Le chemin emprunté par les aliments pour être digérés de nouveau est juste un brin différent : alors que les ruminants régurgitent leur repas pour le mastiquer de nouveau, les lapins leur font refaire un tour à travers le circuit complet ! Bien que certains rongeurs soient également connus pour pratiquer la cæcotrophie, le processus digestif aurait évolué de manière indépendante. Pour les lagomorphes, cette caractéristique est gage d’une grande efficacité au vu de leur régime herbivore, contrairement aux rongeurs qui présentent des régimes plus variés.


Schéma de l’appareil digestif du lapin (Crédits). Le coecum (en rose sur les dessins du bas) est particulièrement bien développé chez les espèces à régime herbivore, où il est le siège d’une digestion bactérienne (Crédits).



Je vous épargne les photos. Vous voici maintenant parés pour briller en société, que ce soit devant l’animal de votre petite cousine, qui force la bête à monter sur vos genoux pendant que vous croisez les doigts pour qu’il ne soit pas pris d’une envie indécente… ou devant votre ragout de lapin, que vous aurez cuisiné en conservant la tête, pour bien faire voir à tout le monde ce que vous avez appris ! Pour ce qui est des intestins, en revanche, c’est au goût de chacun.



Sophie Labaude

Petit guide de la résistance au froid, partie 2 : les plantes terrestres

$
0
0
Haha, bande de veinards ! Alors que l’Europe se réchauffe (enfin !) sous les rayons printaniers du soleil précoce, au Québec, c’est toujours l’hiver. Le vrai. Celui où les mots gèlent en sortant de la bouche. Et où tes sourcils restent figés lorsque tu fais la grimace, tellement ils sont plein de givre.
Bon, j’exagère… mais à peine. Pour preuve, une photo d’actualité :

Après la pluie, dans les Laurentides

Sophie vous a déjà parlé des mécanismes chez les animaux qui permettent de vivre par très basse température (voir ici). Mais la résistance à l’hiver s’observe aussi chez d’autres organismes qu’on trouve partout et qui, eux, ne peuvent pas se déplacer ou se rouler en boule pour échapper au froid ! Il s’agit des végétaux. Eh oui, vous vous imaginez, vous, passer six mois de l’année à des températures négatives, sans bouger une racine, et revivre au printemps comme si de rien n’était ? Ben voyons donc ! Et ça, tous les végétaux terrestres des milieux tempérés et nordiques (ou presque) sont capable de le faire : ils ont chacun leurs «  stratégies »  pour résister à l’hiver, c'est-à-dire, à survire à une période de froid intense accompagné de gel, et de continuer à vivre normalement après cette période.
Mais d’abord, pourquoi devrait-on résister à l’hiver ? C’est vrai ça, pourquoi les plantes ne continuent pas de pousser même par -30°C ? Après tout, elles sont là toute l’année, alors bon, quelques mois de plus ou de moins… Ah mais ça, c’était sans compter le problème du gel. Comme vous le savez certainement, en dessous de 0°C, l’eau gèle (oui bon, pas toujours), elle passe de l’état liquide à l’état solide. Or, les tissus des plantes terrestres sont très gorgés d’eau : entre l’eau nécessaire à la circulation des sèves, l’eau nécessaire aux réactions métaboliques comme la photosynthèse ou la respiration, les végétaux en sont pleins !  On considère que l’eau entre à 90% dans la composition d’une cellule végétale (Raven et al. 2013). Il est donc logique que si la température descend en dessous de zéro, ils vont geler parce qu’ils ne peuvent pas bouger…  Plus particulièrement, lorsque la température descend vers le point de congélation fatidique, on assiste à plusieurs phénomènes, (résumés par Beck et al. 2004) :

·      une augmentation de la viscosité membranaire(souvenez vous, une cellule vivante est délimitée par une membrane constituée d’une double couche de phospholipides, c'est-à-dire des lipides associés à des groupements phosphates), ce qui engendre une perturbation dans les transferts d’ions et autres molécules entre cellules. La viscosité est l’inverse de la fluidité : plus une membrane est fluide, plus les échanges entre le milieu intérieur et extérieur de la cellule sont rapides ; l’activité des protéines transmembranaires (c'est-à-dire les canaux régulateurs des flux au niveau de la membrane : comme au péage sur l’autoroute !)va être facilité par une plus grande fluidité. La fluidité membranaire influe sur tout un tas d’autres paramètres biologiques permettant la vie de la cellule.  Imaginez vous donc lorsque la membrane n’est plus fluide...

·     un métabolisme ralenti (forcément, si plus rien ne circule correctement, comment voulez vous que les informations/nutriments arrivent à l’heure et au bon endroit ?). De plus, certaines protéines essentielles à la bonne marche cellulaire (appelées les enzymes) possèdent un optimum de fonctionnement à une température bien déterminée : si cette température diminue, l’efficacité de ces protéines va diminuer aussi…

·     un décalage entre l’utilisation de l’énergie lumineux et le stockage de cette énergie (sous forme de sucres) : imaginez vous une centrale à vapeur dont on bouche la sortie, au bout d’un moment, si on chauffe toujours de la même manière, ça va péter… eh bien là c’est pareil : les photosystèmes (voir l’article sur l’automne ici) vont recevoir trop d’énergie et ne pourront pas la transférer aux molécules chargées de s’occuper de tout ce trop-plein (l’eau à moitié gelée empêche les réactions…)

Mais aussi, lorsque l’eau gèle, elle est source de stress hydrique pour les plantes. Attention, quand je parle de stress ici, ça ne concerne pas le stress de tout bon parisien qui se respecte à l’idée de rater son métro : en biologie, on parle de stress pour définir toute situation jugée négative pour le bon fonctionnement d’un organisme (par exemple, prédation, parasitisme, manque de nourriture, etc). Bref, lorsque l’eau gèle, elle n’est plus disponible pour les plantes en tant que ressource ! En clair, de l’eau gelée dans le sol, c’est comme pas d’eau du tout : la plante meurt de soif ! Et donc on observe les conséquences classiques du manque d’eau :

·      diminution du volume de protoplasme (= le milieu intracellulaire, pour faire simple) et formation de cristaux de glaceà l’extérieur de la cellule (dans les parois rigides)
·         turgescence négative (la plante se « fane »)
·         concentration des solutés cellulaires : moins d’eau disponible mais la même quantité de molécules dans la cellule… un peu comme quand on laisse évaporer de l’eau de mer, on récupère le sel au final !
·         arrêt des processus métaboliques
·        changement de potentiel transmembranaire(phénomène très important chez les organismes, entre autre, cela permet la formation de l’influx nerveux chez les animaux). Le potentiel transmembranaire est la différence de charges électriques, présentes sous forme d’ions positifs et négatifs, de part d’autre de la membrane (dans et à l’extérieur de la cellule).
·         désintégration de la double couche phospholipidique membranaire

Autant dire qu’après tout ça, notre pauvre plante a bien du mal à fonctionner…  Mais alors, comment est-ce possible qu’à chaque printemps, les plantes retrouvent leurs belles couleurs vertes ? Voici les différentes méthodes, chez les plantes terrestres, pour continuer à exister même après un hiver rigoureux.

Stratégie d’évitement : je suis trop rapide pour le froid, je ne vois jamais l’hiver !

Certaines plantes ont ce que l’on appelle un cycle de vie annuel, c'est-à-dire qu’elles germent, se développent, grandissent, se reproduisent, engendrent des descendants et meurent en une seule année, sans jamais voir l’hiver. Les tomates (Solanum lycopersicon), par exemple, ou encore, les haricots verts (Phaseolus sp.), sont des espèces annuelles : on les sème et on les récolte au cours d’une seule année (si si, les tomates ne poussent pas en hiver, je vous assure, oui, même les tomates « bio » du supermarché). Une fois qu’elles ont donné des descendants, elles… meurent. Et les graines passent l’hiver dans le sol. Mais elles ne gèlent pas ? Non, car une graine est un organe de résistance hautement déshydraté et ne pourra germer que si la dormance est levée (voir cet autre article, décidément, on a réponse à tout sur ce blog).
Par voie de conséquence, les plantes annuelles n’ont donc aucun mécanisme de résistance contre le froid et le gel, tout simplement parce qu’elles ne le subissent pas directement.

Stratégie furtive : faites comme si je n’étais pas là !

Ça, c’est pour toutes les plantes qui se cachent sous terre pendant l’hiver. On a l’impression que la plante « meurt » mais en fait elle est juste enterrée bien tranquillement à l’abri du gel, et elle attend le redoux pour montrer le bout de son nez. Quelques exemples : les pommes de terre, mais aussi tous les « plantes à bulbes » ornementales : jacinthes, tulipes et autres crocus, ou encore des espèces bisannuelles comme la carotte. Il ne s’agit pas ici de graine, bien que les structures soient aussi en sommeil pendant l’hiver. Les plantes à bulbes vont avoir en général une saison de végétation au printemps, ce qui va leur permettre d’emmagasiner des réserves dans la partie souterraine (qui est une tige modifiée, voir l'article sur les monocotylédones) et d’avoir produit des fleurs et des graines avant l’arrivée de l’hiver. Pour les plantes bisannuelles comme les carottes, au cours de la première année de croissance, la plante emmagasine des réserves dans sa racine (c’est la grosse carotte orange qu’on retrouve dans nos assiettes). Lorsque l’hiver arrive, les parties aériennes meurent (c'est-à-dire les feuilles), ou tout du moins, deviennent très réduites, et la plante passe l’hiver bien tranquillement sous forme de racine dans le sol. Au printemps suivant, la plante utilise ses réserves présentes dans la racine pour donner des fleurs, qui produiront des graines… puis la plante finit par mourir lorsque l’hiver revient.

Organes souterrains de stockage chez les plantes [Source] (a) la carotte sauvage Daucus carota (b) bulbe d'oignon (c) bulbe de Crocus (d) rhizome d'Iris (e) racines tuberculeuses de Dahlia (f) tubercules de pomme de terre Solanum tuberosum

Stratégie de face-à-face : vas-y, l’hiver, même pas peur !

“Brace yourselves, winter is coming.”

On pourrait résumer l’adaptation des plantes au froid par cette petite phrase, tirée de la bien connue série Game of Thrones. En effet, un des mécanismes clés de la résistance des plantes au froid est la préparation à l’hiver. En particulier, une détection du raccourcissement des journées à l’aide des phytochromes (Beck et al 2007), mais aussi à l’aide de la détection de baisse de températures. Un phytochrome, qu’est ce que c’est ? Pour rester simple, disons que c’est une molécule organique complexe (voir là, sur le site du Missouri Botanical Garden) qui permet à la plante de détecter les variations dans l’intensité lumineuse, en termes de durée et de qualité. Ainsi, la plante va pouvoir détecter que les jours raccourcissent à la fin de l’été, par exemple.
Concernant la détection de baisse de températures, c’est une phytohormone (= une hormone végétale), l’acide abscissique abrégé en ABA, qui va induire de nombreuses réactions cellulaires.
Ainsi, Minami et al. (2004) ont montré le rôle prépondérant de l’ABA chez la mousse Physcomitrella patens. En plaçant des cellules de cette mousse en présence d’ABA à température ambiante, la résistance à une température négative suivant ce traitement était d’autant plus grande que les cellules étaient restées longtemps au contact de l’ABA. En clair, si on ajoute de l’ABA à température ambiante, la mousse passe en mode « esquimau » lorsqu’elle est contact du froid par la suite : elle supporte mieux le froid !

Physcomitrella patens [source]

Et donc, l’ABA va engendrer des modifications morphologiques à l’échelle de la cellule : grosse vacuole fragmentée en plus petites vacuoles (souvenez vous, la vacuole, c’est cette poche d’eau présente dans la cellule qui sert un peu à tout), épaississement de la paroi de la cellule… D’autres choses se passent à l’échelle moléculaire dans la cellule, pas forcément lié à l’action de l’ABA (d’après Beck et al. 2007):

·         changement dans la composition des lipides membranaires. Pour rappel, les membranes sont composées d’une double couche de lipides, plus ou moins mobiles et libres entre eux : avec le froid, il faut une membrane plus résistante !

·   atténuation de l’activité des photosystèmes(zones clés permettant à la plante d’utiliser l’énergie lumineuse), mais accroissement de la capacité à utiliser l’énergie lumineuse pour le transport cyclique des électrons et la phosphorylation (= réaction enzymatique impliquant la fixation d’un phosphate sur une molécule, afin d’augmenter son potentiel énergétique, entre autre… un peu comme charger une batterie de téléphone : il faut un apport d’énergie de l’extérieur pour qu’il puisse ensuite servir !). Autrement dit, le peu d’énergie reçu par la plante va être stocké un maximum sous forme de molécules organiques !

·    transition du métabolisme à base d’amidon vers un métabolisme dominé par les oligosaccharides, qui utilise les sucres simples (sucrose par exemple) comme cryoprotecteurs. En clair, en temps normal, la plante fait des réserves de sucres (qu’elle produit à l’aide de la photosynthèse) sous forme d’amidon (voir photo après). Sauf que cette organisation en loooongues chaines implique un risque de gel plus important. Du coup, la plante va stocker ses sucres, non plus en molécules complexes, mais en molécules simples, qui vont être mélangées à l’eau et empêcher celle-ci de geler.

Sucres simples comme le glucose ou le sucrose (en haut), sucres complexes comme l'amidon (en bas) [Source]

Toujours concernant les sucres, Minami et al. (2004) ont constaté que lors de la préparation à l’hiver, la quantité de sucres en solution dans les cellules augmente… mais pourquoi ? Eh bien le sucre agit comme un antigel. On sait en effet que plus une solution est concentrée en soluté, et plus on abaisse le point de congélation. C’est pour ça qu’on met du sel sur les routes : l’eau mélangée au sel a tendance à geler à plus basse température que 0°C. Et donc, dans notre cellule frigorifiée, les sucres en grandes quantités servent à protéger les protéines du gel – on rappelle que les protéines sont des structures très coûteuses en énergie, difficiles à mettre en place, et qu’il est important pour la plante de préserver.
A des niveaux plus aisément visibles, on observe que les plantes se préparent au froid par différents mécanismes : arrêt de croissance, sénescence des feuilles et parfois abscission (c'est-à-dire la séparation de la feuille et de la tige de manière naturelle et programmée – c’est le terme scientifique pour désigner la chute des feuilles - ces phénomènes sont surtout visibles chez les arbres) , formation des bourgeons et dormance. Ainsi, certains bourgeons spéciaux sont mis en place dès l’été : ce sont les seules structures qui resteront vivantes sur la plante pendant l’hiver, mais ces bourgeons seront en dormance. .
En particulier, lors du gel, des cristaux de glace peuvent se former dans les troncs des arbres (Parker 1963). Jusque là, pas de problème, car la sève ne circule pas en hiver : c’est au printemps, lors de la fonte des cristaux, que l’arbre va subir ce qu’on appelle la cavitation. La fonte des cristaux de glace va engendrer la formation de bulles d’air, qui vont bloquer la colonne d’eau formée entre les racines et le feuillage… c’est le principe des vases communicants : si la colonne d’eau est rompue, le transfert ne peut pas s’effectuer. Heureusement, des mécanismes de poussée racinaire et de traction foliaire assurent la mise en mouvement des bulles, voire la dissolution totale de celles-ci dans la sève.
Les bourgeons des arbres sont dormants pendant l’hiver, c'est-à-dire qu’ils n’ont quasiment plus d’activité de croissance. Ils ne peuvent recommencer leur croissance qu’après avoir subit un nombre prolongé de jours de gel et de froid : le retour des jours plus chauds après l’hiver permet la levée de dormance (j’ai déjà évoqué ce terme dans l’article sur les graines : c’est le même principe avec les bourgeons). Les bourgeons sont également protégés par des écailles pendant l’hiver : ces écailles vont tomber au printemps lorsque les bourgeons « explosent » : on parle de débourrage. C’est toute la difficulté pour l’arbre de ne pas redémarrer son activité juste au sortir de l’hiver, là où les jours sont doux mais où il peut encore geler. Si l’arbre n’a pas subit assez longtemps le froid à la fin de l’automne et au début de l’hiver, il est plus enclin à redémarrer précocement au sortir de l’hiver… et risque de geler en cas de chute brutale des températures. 

Et après ? Que faire lorsqu’on a subit six mois de gel intensif ?

Certaines plantes refusent d’attendre le dégel complet. Qu’à cela ne tienne, je vais faire fondre la neige qui me recouvre ! ben voyons donc, et la marmotte… enfin bref. Il s’avère qu’il existe bien certaines plantes qui pratiquent la thermogenèse. Kesako ? Comme son nom l’indique, c’est un processus de production de chaleur. C’est le cas du chou puant (de son nom scientifique Symplocarpus fœtidus), qui va faire fondre la neige qui l’entoure (Gibernau & Barabé, 2007) pour pointer sa fleur à la surface !

Symplocarpus foetidus au printemps [Source]

Pour faire simple, la chaleur est produite par la mitochondrie (autrement appelée centrale énergétique de la cellule : c’est là entre autre que se produit la respiration cellulaire). Et par la suite, la chaleur est dispersée dans l’environnement, à un tel niveau qu’elle fait fondre la neige aux alentours… Le chou puant peut ainsi faire augmenter sa propre température jusqu’à une trentaine de degrés ! En plus, la chaleur disperse l’odeur de charogne produite par la plante, ce qui attire les mouches, qui sont ses pollinisateurs attitrés.

Le mot de la fin

Fait que pour conclure, bah, les plantes, elles sont crissement bien adaptées au froid ! Mais ‘stie qu’y fait frette icitte, moi j’aimerai quand même retrouver un peu de printemps, j’ai pas autant de résistance au froid !!!

Bibliographie

Gibernau & Barabé. 2007. Des plantes à sang chaud. Pour la science, n°359 - septembre 2007. http://www.pourlascience.fr/ewb_pages/a/article-des-fleurs-a-sang-chaud-19419.php 

Beck, Heim, Hansen. 2004. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29(4), 449–459

Minami, Nagao, Arakawa, Fujikawa, Takezawa. 2006. Physiological and morphological alterations associated with development of freezing tolerance in the moss Physcomitrella patens. Cold hardiness in plants : molecular genetics, cell biology and physiology– ed. Chen et al. – p. 138

Beck, Fettig, Knake, Hartig, Bhattarai. 2007. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 32(3), 501-510

Parker. 1963. Cold Resistance in Woody Plants. Botanical Review. 29(2), pp. 123-201

Raven et al. 2013. Biology of plants. 8ème édition.

Les Poissons N'Existent Pas depuis 4 ans !

$
0
0
Chères lectrices et lecteurs, scientifiques chevronnés ou débutants, passionnés et/ou curieux, bonsoir !

Juste une petite note pour vous remercier de nous suivre depuis maintenant quatre ans ! Eh oui, ce blog fête aujourd’hui ses quatre années d’existence sur la toile et presque autant au sein du café des sciences.

Joyeux anniversaire les Poissons ! [source]

Quelques chiffres : nous avons dépassé les 10.000 vues par mois entre avril et mai 2015, c’est énooorme, on est fiers et c’est grâce à vous ! En grande majorité, nos lecteurs se trouvent en France, puis viennent les Etats-Unis, le Canada, la Belgique, l’Algérie, la Russie et d’autres.

Les trois articles les plus consultés sont les lions avec plus de 20.000 vues, la diversité des monocotylédones avec environ 10.000 vues, puis le suicide des lemmings avec presque 8.000 vues. Il semblerait qu’un grand nombre de nos lecteurs ait un petit faible pour les animaux à poils. Mais on ne manque pas, et ça continuera encore longtemps, de consacrer des articles à tous les merveilleux organismes, faune méconnue, flore et microbes qui nous entourent, pour le meilleur et pour le pire.

Le mot clé le plus utilisé pour arriver sur notre blog est, sans surprise, le mot « poisson » suivi par le mot « lion » puis « éléphant de mer ». Le nom du blog « les poissons n’existent pas » arrive en quatrième position.

Mais bien plus intéressant, nous récoltons aussi beaucoup de visites de personnes qui, visiblement, cherchent des choses assez étranges sur le net… Il semblerait que nous constituons un doctissimo alternatif en matière de bizarreries : « pénis avec nœud », « ver solitaire ou fausse couche? » ou « maladie testicules géantes ». Certaines personnes se posent des questions vraiment étranges : « comment bien mesurer de la longueur des intestins de lion », « crotte de nez au microscope », « est que l'homme sera capable de faire de la photosynthèse comme l'élysia », « mon cichlidé se couche sur le côté », « combien coûte un vrai lion »… Pour d’autres, on se demande quand même ce qu’ils cherchent : « éléphant de mer faisant caca », « concombre de mer bisous », « crotte la lame », « poisson porc ». On vous épargne toutes les recherches interdites aux mineurs ! Restent quand même quelques-unes qui nous rappellent pourquoi on est là : « raconte-moi l'évolution des êtres vivants », « est ce que les mollusques font partie des poissons » :)

Ce blog a beaucoup évolué depuis sa création, tant au niveau du fond que de la forme, en espérant vous procurer toujours plus de plaisir et de découvertes pendant le temps que vous passez ici. Nous suivons toujours le principe de « peer-review » avant de publier nos articles : cela implique une relecture d’au moins deux membres de ce blog, tout ça dans le but de vous fournir des articles de qualité, à la fois scientifiquement justes et agréables à lire !

De notre côté, nous prenons toujours autant de plaisir à partager avec vous les connaissances du monde des chercheurs, sur des sujets qui nous passionnent ou qui excitent notre curiosité. Et on est très heureux de voir que vous appréciez et que vous êtes de plus en plus fidèles.

En attendant nos prochains articles, on vous retrouve dès maintenant sur notre compte twitter ou notre page Facebook. Merci encore, et continuez à nous lire !


Les Poissons (qui n’existent pas !)

La notion du « moi » chez les végétaux

$
0
0
Aujourd’hui, un peu de philosophie freudienne : on s’allonge sur le divan et on va réfléchir aux différents concepts qui nous permettent de définir avec précision ce qui nous caractérise en tant qu’individu. Pour les humains, on arrive plutôt bien à définir ce qu’est un individu, à savoir, un organisme totalement unique et individualisé capable d’assurer toutes les fonctions nécessaires à sa survie.  Les quelques exceptions se trouvent être les vrais jumeaux, issus de la scission d’une unique cellule-œuf, mais même là, on doit prendre en compte toutes les modifications liées à l’environnement qui ont lieu au cours de la vie. Cette règle est valable chez la plupart des animaux vertébrés… mais lorsqu’on s’intéresse à d’autres groupes de métazoaires, ce n’est plus le cas. Ainsi, comment définir les coraux, qui sont des entités coloniales, capables d’occuper de grandes surfaces? Est-ce un seul organisme morcelé en plein de petites entités pouvant assurer chacune individuellement toutes les fonctions d’un seul organisme, ou bien plein de petites entités ayant des fonctions spécifiques qui une fois réunies ressemblent à s’y méprendre à un seul grand organisme fonctionnel ? Tout ça c’est bonnet blanc et blanc bonnet, en un sens. Et au final, la notion d’individu n’est plus vraiment applicable ! Car dans ce cas, où se situe la limite de ce qu’on appelle un individu ?
Chez les végétaux, c’est encore plus délicat, car plusieurs phénomènes naturels sont à l’origine de la fragmentation d’un seul individu en plusieurs… ou même de la réunion de différents individus en une seule méga-entité ! Voire, dans le cas des lichens, l’association d’organismes très éloignés dans l’histoire du vivant (algues et champignons).
Ainsi, cette étude récente de Patrut et al, parut en 2015 dans PlosOne , fait l’étude d’un Baobab, afin de comprendre comment les troncs imposants de ces arbres sont constitués.

Un aperçu du Baobab étudié. Dimensions : 18,5 m de hauteur et 21, 44 m de circonférence à hauteur de poitrine (1,30 m) [source]


La particularité des baobabs, en tout cas de celui-ci, est la présence d’une cavité centrale, un creux si vous voulez, dans le tronc. On peut même y rentrer à plusieurs !

Les gens dans la cavité centrale [source]

Chez un arbre classique, les tissus les plus vieux se situent à l’intérieur du tronc, et les plus jeunes en périphérie. On peut dater l’âge de l’arbre grâce à la méthode appelée « dendrochronologie », qui consiste à faire des trous dans l’arbre et à en retirer des morceaux du bois afin de compter le nombre de cernes de croissance (un cerne de croissance correspond au fonctionnement continu du cambium de l’arbre qui correspond à une année, en général, sauf dans les régions tropicales humides sans alternance de saisons où il est plus difficile d’observer ces cernes). Donc pas besoin de couper l’arbre pour connaitre son âge !


Un chercheur qui fait des petits trous pour étudier l'intérieur de l'arbre sans le couper ! [source]

La morphologie de cet arbre peut sembler normale au premier regard : juste un arbre très gros et très large, dont le centre du tronc a été évidé au cours du temps (ça arrive chez les très vieux arbres). Dans ce cas, on devrait retrouver les tissus les plus vieux à l’intérieur de la cavité et les tissus les plus jeunes à l’extérieur. Mais il n’en est rien, car les prélèvements montrent que les âges sont similaires sur tout le pourtour de l’arbre, que ce soit à l’extérieur ou à l’intérieur. En clair, que l’on se place dans la cavité centrale ou à l’extérieur de la structure, les parties les plus exposées à l’environnement (interne ou externe) ont le même âge.
Tout ça peut s’interpréter par la présence d’au moins cinq troncs de baobabs issus d’une même souche, qui ont fusionné au cours de leur développement. La notion d’individu est ici flexible chez ce baobab, au premier abord : doit-on considérer que ces cinq troncs formaient cinq individus distincts, qui se sont réunis pour n’en former qu’un seul ? En réalité, il s’agit bien ici d’un seul et même individu, et non pas de cinq, puisque tous les troncs sont issus d’une seule et même graine à la base ! Aucune donnée n’est en revanche disponible à propos de la communication des troncs entre eux au niveau des soudures… Mais d’autres études menées dans les forêts canadiennes montrent d’autres résultats tout aussi surprenants, à une autre échelle.

Une coupe transversale du "tronc" du baobab [source]

Ainsi, l’étude de Tarroux et al. (2011) montre que les arbres de peuplements denses entremêlent leurs racines à tel point… qu’elles deviennent soudées entre elles ! Les arbres sont alors capables d’échanger des nutriments entre racines provenant de différents individus. Les chercheurs ont montré que les nutriments produits par un arbre pouvaient passer dans les racines d’un autre arbre… dont les parties aériennes avaient été supprimées ! Cependant, cela semble être confiné aux arbres d’une seule et même espèce (pas de soudure entre arbres de différentes espèces). A partir de ce moment, comment peut-on définir l’individu végétal, puisque plusieurs individus finissent par fusionner ensemble ? Une autre étude (Fraser et al 2006) montre que les arbres les plus faibles dans une population de pins tordus (oui c’est son nom…) ne mourraient pas suite à l’ombre produite par les arbres plus grands, mais qu’ils recevraient des nutriments de la part des arbres les plus vigoureux par le biais des racines. De tels échanges nécessitent une fusion du système vasculaire racinaire : à partir de là, où commence un individu et ou se termine l’autre ? Peut-on réellement parler d’individus connectés et distincts, ou doit-on parler d’un « méta-organisme » ?
Enfin, je vous présente l’un des plus grands organismes vivants sur terre… non ce n’est pas la baleine bleue (qui est le plus gros animal sur Terre, nuance), mais c’est bien un arbre ! En fait il s’agit d’une population clonale, c'est-à-dire, le même génome, répandu sur environ 4000 m² et présentant plus de 40.000 troncs individuels.

Le peuplement de peupliers... qui est un seul organisme ! [source]


Ces peupliers sont en réalité un seul et même organisme, qui s’est répandu à l’aide de son système racinaire ; les peupliers étant capable de redonner des troncs à partir des racines (on appelle ça des drageons),  on a l’impression de se retrouver en forêt… alors qu’il s’agit d’un seul individu, techniquement.

En conclusion, on peut dire que la notion d’individu chez les végétaux est très éloignée de ce qu’on peut concevoir pour les animaux vertébrés. Parfois il s’agit d’un organisme unique étendu sur de longues distances, parfois il s’agit d’un agrégat d’organismes fonctionnant ensemble comme un méta-organisme !
Le botaniste Francis Hallé considère qu’un arbre n’est pas un seul individu, mais bien un ensemble d’individus, issus d’une souche unique, qui constituent au cours du temps des populations génétiques distinctes. Particulièrement, il considère que chaque bourgeon est indépendant de ses voisins et représente un seul individu. En clair, un arbre serait une mosaïque d’individus, au départ apparentés, puis de plus en plus divergents entre eux suite à l’accumulation de mutations liés à l’évolution. A une échelle très condensée, un arbre serait donc la représentation matérielle de l’évolution, que nous représentons de manière conceptuelle à l’aide… d’arbres phylogénétiques.

Bibliographie

Patrut et al. (2015) African Baobabs with False Inner Cavities: The Radiocarbon Investigation of the Lebombo Eco Trail Baobab. PlosOne.

Tarroux et al. (2011) Effet of natural root grafting on growth response of Jack Pine (Pinus banksiana; Pinaceae). American Journal of Botany 98(6): 967–974.

Fraser et al. (2006). Carbohydrate transfer through root grafts to support shaded trees. Tree Physiology 26: 1019-1023

site web http://www.fs.usda.gov/detail/fishlake/home/?cid=STELPRDB5393641

Pomme de reinette et pomme d'api, Jack O'Lantern et feuilles d'automne.

$
0
0
C'est l'automne ! C'est la saison des pommes et des feuilles rouges et jaunes !
Fraîchement débarqué au Québec cette année, je suis bien obligé de reconnaître que l'automne au Canada n'a pas volé sa réputation et que les couleurs sont au rendez-vous. La preuve en image !

Petit aperçu des couleurs de l'automne au Québec

Mais c'est aussi le temps de la récolte de divers fruits : au Québec, on ramasse en famille ou entre amis des quantités considérables de pommes avant l'hiver, histoire d'avoir des fruits bien juteux à se mettre sous la dent lorsque la neige arrivera. En France, on célèbre septembre avec les vendanges et la récolte du raisin. Sans oublier l'arrivée de l'Halloween, fin octobre, à qui l'on doit les nombreuses citrouilles d'un bel orange dans les rues des pays à influence anglo-saxonne...

En haut à gauche, le ramassage des pommes (source) ; en bas à gauche, le raisin mûr des vendanges (source) ; à droite, une belle citrouille d'Halloween (source)

Mais pourquoi je parle de tout ça ? Quel rapport entre les feuilles rouges et les citrouilles, mis à part le fait que tout ça se retrouve à l'automne ? Eh bien, ce sont les couleurs ! Car oui, maintenant qu'on y pense, tous ces végétaux n'ont pas la traditionnelle couleur verte qu'on associe aux plantes. Alors, à quoi sont dues toutes ces couleurs ? Quels sont les mécanismes qui se cachent derrière cette débauche de teintes allant du rouge au jaune en passant par le orange ? Et surtout, quels sont les avantages évolutifs que ces couleurs confèrent aux plantes?
Commençons par nous pencher sur la question du changement de couleur des feuilles des arbres. D'abord, à quoi est due la couleur verte des feuilles au printemps et en été? Au pigment appelé chlorophylle. J'en ai déjà parlé dans cet article là qui date d'il y a un petit moment déjà.
Où se situe la chlorophylle dans les feuilles ? Déjà, il faut savoir qu'une feuille est un organe complexe, organisé en couches.

Coupe d'une feuille (source)

Ce qu'on peut voir sur le schéma précédent, c'est que la couche centrale de la feuille, appelée mésophylle, ou parenchyme,  est le lieu où se situent les cellules responsables de la photosynthèse. Les cellules sont organisées de la manière suivante.

Une cellule végétale, avec les chloroplastes en vert (source)

Dans la cellule, l'organite responsable de la photosynthèse est le chloroplaste (en vert sur la photo précédente). En général, il y en a plusieurs par cellule. Les chloroplastes contiennent des structures en mille-feuilles, appelées les thylakoïdes : ce sont des membranes superposées les unes sur les autres. C'est dans ces membranes que sont incluses les molécules de chlorophylle, qui vont permettre la photosynthèse.

Un chloroplaste, reconstitué en trois dimensions (source)


A présent, je vais (un peu) entrer dans les détails concernant la structure biochimique de la chlorophylle. D'abord il faut savoir qu'on trouve deux types de chlorophylles, les chlorophylles A et B (photo) qui ont une structure très proche l'une de l'autre (elles ne diffèrent que par quelques atomes, représentés par la lettre R sur la figure).

Les deux types de chlorophylle (source)

La chlorophylle, associée à d'autres molécules aux noms tous plus compliqués les uns que les autres dans un ensemble appelé le photosystème, va avoir le rôle de "capteur de photons" (les photons sont les ondes-particules constitutives de la lumière). L'énergie de ces photons sera ensuite utilisée par la plante pour produire au final des sucres et du dioxygène. Mais avant cela, la plante emmagasine l'énergie sous forme chimique, dans des molécules possédant un fort "pouvoir énergétique" - c'est à dire qu'elles libéreront beaucoup d'énergie lorsqu'elles seront utilisées ultérieurement.

Utilisation de l'énergie solaire par les photosystèmes (source)
Sur ce schéma, l'énergie provenant du photon est transférée aux photosystèmes I et II (où se trouvent des molécules de chlorophylle). L'énergie provenant du photon va "exciter" la chlorophylle, qui va perdre un électron, et cet électron va servir à emmagasiner de l'énergie dans les molécules stockeuses d'énergie, qui sont le NADPH et l'ATP. Au final, la chlorophylle récupère son électron perdu en utilisant une molécule d'eau. Toutes ces réactions sont appelées la "phase claire" de la photosynthèse, car elles se déroulent à la lumière. Les sucres seront synthétisés lors de la "phase sombre", constituée d'une série de réactions dont je ne vais pas parler ici.
Ah au fait, pourquoi les feuilles sont elles vertes en été ? Le vert est donné par la couleur de la chlorophylle. En effet, comme je l'ai dit plus haut, la chlorophylle va absorber l'énergie des photons... mais pas de tous les photons ! Elle est très sélective : seuls les photons "bleus" et "rouges" l'intéressent*. Les autres photons, ceux de "couleur verte", sont réfléchis par la chlorophylle... et donc par conséquent, nous voyons les feuilles des arbres vertes.

Spectre d'absorption des chlorophylles A et B (source)

La photo précédente montre le spectre d'absorption de la chlorophylle : les pics correspondent aux longueurs d'onde des photons qui sont les mieux utilisés par la chlorophylle. Vous remarquez que la courbe fait un "creux" au niveau des photons "verts" : c'est parce qu'ils ne sont pas absorbés par la chlorophylle !
Bon et maintenant, que se passe-t-il à l'automne ? Je n'ai toujours pas répondu à la question du changement de couleur!
Comme vous le savez certainement, à l'automne, il fait plus froid. Mais il y a encore assez de lumière solaire pour que les plantes continuent à réaliser la photosynthèse... le problème, c'est que lorsque la température diminue, l'efficacité de la chlorophylle diminue aussi, et la plante devient stressée car elle a trop d'énergie solaire qui lui arrive alors qu'elle ne peut pas l'utiliser ! Et là c'est le drame, elle fait une overdose d'énergie, si l'on peut dire : on observe un phénomène appelé photo-inhibition. Suite à ce trop-plein d'énergie, la photo-inhibition va conduire à la destruction des structures cellulaires, via toute une série de réactions que je ne vais pas expliquer ici. Entre autre, cela fait intervenir des radicaux libres, que l'on appelle aussi "Oxygène actif" (et les tâches s'évanouissent… pardon, c'est hors sujet) tels que l'eau oxygénée H2O2et l'oxygène singulet (voir les pages wikipédia en anglais pour la photo-inhibitionet en français pour les radicaux libres). Et ça, vous l'aurez deviné, ce n'est pas bon DU TOUT pour la plante, car la mise en place de la chlorophylle a un coût énergétique élevé. Or, c'est l'automne, bientôt l'hiver, la plante à autre chose "en tête" que de devoir reconstruire des structures abimées.
On observe que la chlorophylle est préservée lorsque les feuilles prennent un coloration rouge, grâce aux anthocyanes, qui sont aussi des pigments végétaux très communs (ce sont eux qui donnent leurs couleurs aux fleurs ou aux fruits).

Formule générale d'une molécule d'anthocyane. Les lettres R sont des groupements d'atomes qui varient selon les différentes molécules d'anthocyanes (source)
Mais attention ! les anthocyanes ne se situent pas dans le chloroplaste comme la chlorophylle, mais dans la vacuole de la cellule. Ce sont des composés solubles.
Et donc, ces petites molécules vont agir comme filtres pour protéger la fragile chlorophylle d'une trop forte intensité lumineuse. Et si les feuilles deviennent rouges, c'est parce que les anthocyanes absorbent tous les photons "verts" mais laissent passer les photons "rouges" et "bleus" qui sont utiles à la chlorophylle.

Spectres d'absorption des chlorophylles et d'un anthocyane (source)

Comme la chlorophylle n'absorbe pas strictement tous les photons qu'elle reçoit, la couleur que nous percevons est la couleur rouge des photons non absorbés. En revanche, les anthocyanes absorbent tous les photons "verts" pour protéger efficacement la chlorophylle.
Bon ! A présent, nous savons comment et pourquoi les feuilles sont rouges en automne.
Et les citrouilles alors ? D'où vient ce bel orange vif ? Est ce que ce sont des anthocyanes dilués qui sont responsables de la couleur ?
Eh bien pas du tout ! Là encore, d'autres pigments sont mis en cause : il s'agit des caroténoïdes, que l'on trouve beaucoup dans... les carottes, c'est bien, y en a qui suivent toujours dans le fond. Et ceux qui ont parcouru le blog de fond en comble me diront qu'on en trouve aussi chez les Flamants Roses. Ces pigments, quant à eux, ne se trouvent pas dans les vacuoles des cellules mais dans les chromoplastes, qui sont en quelque sorte des chloroplastes sans chlorophylle, et qui colorent les structures végétales (chromo signifie "couleur" en Grec) plutôt qu'à faire la photosynthèse. Et c'est pareil chez la plupart des fruits : pommes, oranges, citrons, etc. La variation de couleur entre le rouge et le jaune dépend du type de caroténoïde précis (il en existe de nombreux très semblables qui diffèrent seulement par un atome ou deux... ce qui suffit à changer leurs propriétés en terme de couleurs !). Dans le cas des fruits, ces couleurs servent à les rendre attractifs pour les animaux frugivores (et aussi pour Monsieur et Madame Tout-le-monde qui vont faire leurs courses au supermarché du coin), car n'oublions pas que les fruits sont les structures qui sont responsables de la dissémination des graines et donc, des futures plantes.

Variation de couleurs chez les citrouilles (source)

Voilà, maintenant, vous saurez pourquoi les feuilles sont rouges en été, et pourquoi les citrouilles sont oranges lors de l'Halloween !

* rappelons que la lumière blanche produite par le Soleil est constituée en réalité de différentes ondes électromagnétique visibles, qui possèdent différentes longueurs d'ondes, et qui additionnées les unes aux autres donnent la lumière blanche.

Bibliographie :

David W. Lee and Kevin S. Gould. Why Leaves Turn Red: Pigments called anthocyanins probably protect leaves from lightdamage by direct shielding and by scavenging free radicals. American Scientist, Vol. 90, No. 6 (NOVEMBER-DECEMBER 2002), pp. 524-531


Hock-Eng Khoo, K. Nagendra Prasad, Kin-Weng Kong, Yueming Jiang and Amin Ismail. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules2011, 16, 1710-1738

De l’utilité de créer son propre zombie…

$
0
0

...Ou le monde fabuleux des parasites manipulateurs


Si la fête d’Halloween nous a amené sa ribambelle de monstres en tous genres, je vous propose aujourd’hui de rester dans le thème et parler des zombies. Attention, pas ces zombies snobs qui se pavanent dans des films grotesques comme «  Shaun of the Dead » ou « Warm bodies »… Ces humains complètement gaga et tout baveux se croient célèbres sous prétexte qu’ils apparaissent dans une poignée de longs métrages (quelques 350 selon Wikipédia, pas de quoi en faire toute une histoire…), alors qu’au fond, à part terroriser les foules, ils ne servent pas à grand chose. Un bon zombie est un zombie utile ! C’est un zombie prêt à tout pour servir son créateur, y compris se jeter littéralement dans la gueule du loup.


(Source)


Qui a besoin des zombies ?


En tant qu’être humain, il faut avouer qu’un zombie a une utilité relativement limitée. Des personnes pour faire le travail à notre place, on en a déjà. Nos gosses, nos employés, nos chiens s’ils sont bien dressés… Et puis la technologie fait des miracles, les ordinateurs et robots s’occupent de presque tout à l’heure actuelle, sans même qu’on s’en aperçoive. Mais il existe des créatures qui ont un besoin crucial d’un autre individu pour les maintenir en vie. Je ne suis pas en train de parler de Voldemort qui squatte le crâne de ce pauvre professeur Quirrell, mais finalement l’exemple se rapproche pas mal de la réalité. Si vous n’avez pas compris ma dernière phrase (mais vous vivez où ?!), brève explication. Voldemort (l’ennemi de Harry Potter, le mec qui vit sous un escalier), est un sorcier anéanti, incapable de se fabriquer un corps comme tout un chacun avec ce qu’il faut pour se déplacer, trouver de la nourriture, communiquer, etc. (bon, par la suite il reprendra du poil de la bête). Pour survivre, il habite littéralement le corps d’un hôte humain, et non seulement il puise en lui les ressources nécessaires pour survivre, mais en plus il le mène à la baguette (de sorcier !) pour lui faire faire ce qu’il veut (tenter de tuer des mômes par exemple). Hé bien finalement, c’est exactement ce que font nos créatures zombifiantes du jour : les parasites manipulateurs.

Les parasites sont des créatures qui vivent aux dépens d’autres êtres vivants (les hôtes). Les parasites les plus intéressants (et je ne dis pas ça parce qu’ils constituent le sujet de ma thèse), sont les parasites dit « hétéroxènes », c'est-à-dire qu’ils ont besoin de plusieurs hôtes successifs pour boucler leur cycle de vie (naitre, grandir, se reproduire). Par exemple, la très célèbre petite douve du foie Dicrocoelium dendriticum va vivre une partie de sa vie dans des escargots, puis va passer chez des fourmis via la bave du gastéropode, et finir son cycle dans des mammifères herbivores, comme des vaches ou des moutons.



Cycle de vie de la petite douve du foie (Source)


La photo de notre très sexy petite douve... (Source)


Quel est le rapport entre les parasites et les zombies ? Hé bien, prenons notre petite douve du foie, qui est minuscule et qui ne sait même pas marcher. Pauvre petit être sans défense, comment ferait-elle toute seule, perdue dans la nature immense et hostile, pour repérer son mouton, lui sauter dessus et forcer l’intrusion dans son organisme ? Mission impossible. La douve utilise une méthode bien plus subtile… La fourmi possède des pattes, elle. Et puis elle pourrait s’approcher des moutons en grimpant en haut des brins d’herbes… La douve, comme beaucoup de parasites, est devenue l’illustration même de la célèbre maxime « on n’est jamais mieux servi que par quelqu’un d’autre ». Et la pauvre fourmi, zombifiée, dirigée par son impitoyable tortionnaire, va bravement aller se faire dévorer par des moutons…


Les grandes stars


Les parasites qui « dictent » à leur hôte de se faire dévorer par le prochain hôte, on en trouve à foison dans la nature. L’exemple de la douve est très connu. Parmi les grandes célébrités, nous avons aussi Leucochloridium paradoxum. Ce ver plathelminthes, qui habite d’abord dans un escargot, doit finir son cycle dans un oiseau. Ces derniers, bien que prédateurs, ont malheureusement une préférence pour des chenilles. Qu’à cela ne tienne, le ver va induire une transformation des yeux de l’escargot en une réplique quasi parfaite de la nourriture favorite de l’oiseau ! Et pour plus d’efficacité, l’escargot attendra sagement bien en évidence en pleine lumière qu’un oiseau vienne lui picorer les yeux. Jetez un œil ici pour plus de détails et explications sur le lugubre calvaire du pauvre gastéropode.

(Source)

En continuant dans la lignée des grandes stars de la manipulation, vous avez peut être déjà croisé ces images de fourmis au derrière si rouge et si gonflé qu’il ressemble à s’y méprendre à une baie, très alléchante pour les oiseaux… La faute au nématode Myrmeconema neotropicum, qui, comme vous l’aurez deviné, finit également son cycle chez un oiseau.


L'abdomen de ces fourmis, noir à l'origine, se teinte de rouge et se détache 14 fois plus facilement du reste du corps quand l'animal est parasité (Sources ici et )



Plus de subtilité pour une perfide efficacité


Pour beaucoup de mes lecteurs, les exemples que je viens de citer ne sont pas une nouveauté. Scientifiques comme grand public apprécient la magie des lugubres transformations de ces zombies, digne de films de science fiction. Mais ces extravagances détournent l’attention des œuvres de la grande majorité des parasites manipulateurs, beaucoup plus subtiles dans leurs procédés. Sans compter qu’un hôte intermédiaire (le zombie) ne sert pas uniquement de véhicule vers l’hôte final : il a des ressources à exploiter.

Petit descriptif des caractéristiques et panel d’options à disposition des parasites, logés bien au chaud dans leur hôte. Voici, pour illustrer, une brochure publicitaire trouvée chez un concessionnaire d’hôtes intermédiaires à l’usage des parasites acanthocéphales et trématodes :


« Tenez-vous bien, on a ici le nec plus ultra. Au sein de votre zombie, moelleux et de tout confort, vous pourrez vous développer à votre rythme sans difficulté, puisant dans votre hôte toutes les ressources dont vous aurez besoin [1]. Les zombies de luxe sont pourvus d’options pour moduler la quantité et qualité de ressources disponibles [2-3]. Votre zombie vous baladera tranquillement au gré de ses mouvements, vers une destination que vous pourrez choisir vous-même [4], jusqu’à ce que vous soyez prêts à vous en séparer. Vous pouvez activer l’option « protection anti-prédateur » [5-6-7], qui vous assurera une plus grande sécurité durant votre développement, réduisant la probabilité que votre zombie (et vous avec) se fasse dévorer. Une fois au dernier stade de votre développement avant votre prochain hôte, vous pourrez activer l’option « se faire volontairement bouffer » pour atterrir sans le moindre effort directement à l’intérieur même de votre hôte suivant [8-9-10-11]. Je vous conseille de choisir, lors de l’activation de cette option, des paramètres adaptés à votre future hôte, histoire de ne pas se faire dévorer par la mauvaise espèce [4-12].»


Des fourmis, contrôlées par des parasites, deviennent des véhicules de luxe tout-équipés (Source)


L’exemple des gammares et des acanthocéphales


Cette description est bien jolie mais on se demande toujours quels sont les traits concrètement modifiés chez les hôtes zombifiés. Pour illustrer ça, je vais prendre un des exemples préférés des chercheurs qui bossent sur la manipulation parasitaire, et qui accessoirement constitue le cœur de mon sujet de thèse : les gammares, parasités par des acanthocéphales.

Les gammares sont des petits crustacés très abondants dans nos rivières, avec de nombreuses espèces présentes en Europe. Ils constituent le repas de nombreux prédateurs : oiseaux, amphibiens, créatures vertébrées qui peuplent nos rivières (ouais, ce qu’on appelle vulgairement « poissons » quoi)… Et ils sont également l’hôte intermédiaire de nombreux parasites, dont plusieurs espèces du groupe des acanthocéphales. En général, les acanthocéphales ont pour hôte final un poisson ou un oiseau selon les espèces. Ils se reproduisent dans le tube digestif de ces hôtes, et pondent des œufs qui seront libérés dans le milieu avec les fèces de l’animal. Les gammares vont à leur insu consommer ces œufs, et permettre au parasite de se développer. Celui-ci passera par deux stades distincts. Seul le deuxième est viable pour être transmis à l’hôte final. L’intérêt pour le parasite est donc de grandir tranquillement dans le gammare jusqu’à atteindre ce deuxième stade, puis de laisser son hôte gammare se faire dévorer par un oiseau ou un poisson pour retrouver le lieu propice à la reproduction, et boucler le cycle.

Le parasite acanthocéphale (genre Polymorphus) est ici très clairement visible à travers la cuticule de ce gammare Gammarus lacustris (Source)

Cycle de vie d'un acanthocéphale ayant pour hôte final un poisson et pour hôte intermédiaire un gammare


Premier constat des chercheurs : les gammares qui abritent des parasites sont plus enclins à se faire dévorer par les prédateurs [10-9]. Des dizaines d’études se sont alors penchées sur le sujet : qu’est-ce qui change entre un gammare sain et un gammare parasité qui mènerait à cette différence de prédation ? Petit listing non exhaustif.

Tout d’abord, la couleur du gammare change, puisque les acanthocéphales, d’une couleur allant du jaune au rouge, sont visibles par transparence [13-14]. Mais plus que l’apparence, ce sont les changements de comportements qui intriguent. Les gammares, vivant d’ordinaire dans le fond des rivières et dans des endroits sombres et abrités, sont subitement attirés par la lumière [15-16], se mettent à nager en surface [17-18] et dédaignent les refuges [9-10]. Le tout en s’agitant bien plus qu’à l’ordinaire [16]. En somme, ils deviennent très faciles à repérer par les prédateurs. Et puis plutôt que d’aller se fondre dans la masse de leurs congénères pour passer incognito, ils se la jouent subitement solitaire [19-20]. La manipulation va pourtant bien plus loin que ça : non content d’être bien repérables, les gammares parasités vont développer une affinité avec… leur prédateur lui-même. Si leurs congénères sains (d’esprit…) vont rapidement se mettre à couvert quand ils détectent une odeur de prédateurs, nos gammares parasités vont y être irrémédiablement attirés… [8-9-10]

Pour pousser la subtilité encore plus loin, rappelez-vous que les parasites ont un intérêt à ce que leur hôte gammare se fasse dévorer seulement quand ils ont eux-mêmes atteint leur deuxième stade de développement. Hé bien tant qu’ils sont au premier stade, la manipulation va quand même s’observer mais… dans l’autre sens ! Pour faire simple, le parasite va modifier le comportement du gammare d’une manière menant à une réduction de ses chances qu’il se fasse croquer par un prédateur. Les gammares vont par exemple passer plus de temps à l’abri [6]. Et puis il y a aussi l’histoire du mauvais prédateur : c’est bien beau d’être repérable, mais si le gammare se fait manger par un poisson alors que le parasite doit se développer dans un oiseau, ça ne sert pas à grand-chose… Hé bien même à ce niveau-là le parasite semble avoir trouvé la parade. Par exemple, des variations temporelles peuvent être observées : les gammares seraient ainsi attirés vers la surface seulement la nuit, ou le jour, menant respectivement à une prédation par des animaux nocturnes ou diurnes [4]. Sans compter que les comportements modifiés sont différents selon l’hôte final visé, menant effectivement à une prédation plus importante par le « bon » hôte [10].


Au premier stade de leur développement, les acanthocéphales rendent leurs hôtes gammares plus résistants à la prédation (Source)


Adaptation ou effet secondaire ?


Par soucis de vulgarisation, j’ai présenté l’effet des parasites sur leurs hôtes de manière très déterministe et finaliste. Cependant, à l’heure actuelle et malgré des dizaines d’années d’études sur les parasites manipulateurs, la question se pose toujours (et peut être même plus encore) sur le caractère adaptatif de ces modifications [21]. Est-ce que les comportements des hôtes parasités ont vraiment évolué parce qu’ils apportaient un bénéfice au parasite ? Ou est-ce que ces modifications ne sont que des effets secondaires induits par l’infection, pas forcément bénéfique pour le parasite, ni même pour l’hôte ?

La question n’a pas de réponse précise à l’heure actuelle, mais il semble que les deux hypothèses soient valables selon le trait qu’on considère. Certaines études ont par exemple montré que le changement d’apparence de nos gammares n’avait pas d’effet sur ses chances d’être prédaté [14], de quoi tordre le cou à l’explication adaptative. De même, les comportements d’ordre global (modification de l’activité générale de nos animaux par exemple) pourraient n’être qu’une conséquence physiologique de l’infection, détectable quelque soit le parasite (y compris ceux qui ont un cycle de vie simple). En revanche, la spécificité de certaines modifications de comportement donne des points à l’explication adaptative. Par exemple, le comportement d’un gammare sera modifié différemment selon qu’il est parasité par une espèce qui veut terminer sa vie dans un oiseau, ou dans un poisson, et cette différence va effectivement mener à un risque de prédation plus grand, respectivement par des oiseaux ou des poissons [10]. De plus, la manipulation inversée au cours du premier stade du développement du parasite soutient également une évolution liée aux bénéfices pour le parasite à modifier le comportement de l’hôte. Toujours est-il que la question reste entièrement ouverte, les parasites affectant en général simultanément de nombreux traits de l’hôte, les deux explications pouvant être également simultanément tout à fait plausibles.


Faut-il craindre les parasites manipulateurs ?


En dépits de leurs pratiques qui peuvent paraître lugubres, les parasites manipulateurs sont connus pour jouer un rôle important dans les écosystèmes [22], du fait notamment de leur capacité à modifier les relations biotiques. Cependant, quand ces relations biotiques font intervenir l’homme, c’est une autre histoire.

La malaria, ou paludisme, est une maladie due à un parasite unicellulaire du genre Plasmodium, et qui causerait chez l’humain près d’un million de morts par an. Vous imaginez alors l’intérêt de comprendre tout le cycle de ce parasite, en termes d’applications préventives par exemple. Ce parasite est transmis à l’homme via le moustique. Et si ces derniers sont souvent largement blâmés pour être le vecteur de cette terrible maladie, ils n’y sont relativement pour rien. Et même pire : le parasite va pousser le moustique à nous contaminer… Des études ont ainsi montré que le parasite vampirise encore plus les moustiques, qui non seulement vont se mettre à piquer bien plus de gens, mais en plus vont être du genre collant, se nourrissant plus longtemps sur chaque victime [23]. Le parasite bénéficie donc à la fois d’un plus grand nombre d’hôtes potentiels, et aussi de plus de temps pour opérer le changement d’hôte… Ce caractère manipulateur du parasite est malheureusement encore trop ignoré dans les modèles épidémiologiques.


Le moustique, vecteur du parasite de la malaria, voit son comportement de nourrissage modifié sous l'emprise de ce parasite, augmentant sa probabilité de transmission (Source)


Deuxième exemple avec un autre protozoaire, le parasite Toxoplasma gondii, qui est responsable chez l’humain de la toxoplasmose. Le cycle classique de ce parasite comprend un hôte intermédiaire, souvent le rat, et un hôte final, le chat, au sein duquel il se reproduit. Comme vous l’aurez deviné, un rat infecté va présenter des modifications comportementales augmentant sa probabilité de se faire croquer par le matou du coin… [24] En d’autres termes, nos rongeurs infectés vont soudainement être attirés par leur ennemi mortel ! Si vous vous étonnez que votre chat d’ordinaire paresseux et incapable vous ramène une belle proie, prenez garde… Même si l’humain ne fait pas partie du cycle classique du parasite, il peut tout à fait être infecté. Si contrairement à une idée reçue, la transmission ne se fait pas par simple contact avec votre animal, une ingestion impromptue de fèces (vous vous touchez le visage après avoir changé la litière du chat…) est vite arrivée (si, si !). Et même si les humains sont une voie sans issue pour le parasite, les patients affectés présentent une personnalité et un niveau de QI altérés… [25] Quand aux parasites responsables de la malaria, ils auraient également un effet sur nous, rendant les humains plus alléchants pour les moustiques... [26] Considérant le nombre important de parasites en tous genres capables de nous infecter, on a de quoi se poser des questions… Sommes-nous en permanence sous l’emprise d’une maléfique manipulation ? Sommes-nous finalement déjà tous des zombies ?...


Des souris qui aiment les chats, ça existent. Elles ne sont pas forcément masos, mais probablement sous l'emprise d'un parasite tel que celui de la toxoplasmose qui les pousse à aller se faire dévorer (Source)



Bibliographie :

  • [1] Benesh, D. P. & Valtonen, E. T. 2007. Effects of Acanthocephalus lucii (Acanthocephala) on intermediate host survival and growth: implications for exploitation strategies. Journal of parasitology, 93, 735–741.
  • [2] Gaillard, M., Juillet, C., Cézilly, F. & Perrot-Minnot, M.-J. 2004. Carotenoids of two freshwater amphipod species (Gammarus pulex and G. roeseli) and their common acanthocephalan parasite Polymorphus minutus. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 139, 129–136.
  • [3] Minchella, D.J., Leathers, B.K., Brown, K.M. & McMair, J.N. 1985. Host and parasite counteradaptations: an example from a fresh-water snail. American Naturalist, 126, 843–854. 
  • [4] Lagrue, C., Kaldonski, N., Perrot-Minnot, M.J., Motreuil, S. & Bollache, L. 2007. Modification of hosts’ behavior by a parasite: field evidence for adaptive manipulation. Ecology, 88, 2839–2847. 
  • [5] Hammerschmidt, K., Koch, Milinski, K.M., Chubb, J.C. & Parker, G.A. 2009. When to go: optimization of host switching in parasites with complex life cycles. Evolution, 63, 1976–1986. 
  • [6] Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Gaillard, M., Léger, E., Rigaud, T. & Elsa, L. 2011. Protection first then facilitation: a manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution, 65, 2692–2698. 
  • [7] Médoc, V. & Beisel, J.-N. 2011. When trophically-transmitted parasites combine predation enhancement with predation suppression to optimize their transmission. Oikos, 120, 1452–1458. 
  • [8] Baldauf, S.A., Thünken, T., Frommen, J.G., Bakker, T.C.M., Heupzl, O. & Kullmann, H. 2007. Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. International Journal for Parasitology, 37, 61-65. 
  • [9] Perrot-Minnot, M.-J., Kaldonski, N. & Cézilly, F. 2007. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. International journal for parasitology, 37, 645–51. 
  • [10] Kaldonski, N., Perrot-Minnot, M.-J. & Cézilly, F. 2007. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Animal Behaviour, 74, 1311–1317. 
  • [11] Carney, W.P. 1969. Behavioral and morphological changes in carpenter ants harboring dicrocoeliid metacercariae. The American Midland Naturalist Journal, 82, 605–611. 
  • [12] Webber, R.A., Rau, M.E. & Lewis, D.J. 1987. The effects of Plagiorchis noblei (Trematoda: Plagiorchiidae) metacercariae on the susceptibility of Aedes aegypti larvae to predation by guppies Poecilia reticulata and meadow voles (Microtus pennsylvanicus). Canadian Journal of Zoology, 65, 2346–2348. 
  • [13] Bakker, T. C. M., Mazzi, D., & Zala, S. 1997. Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology, 78, 1098–1104. 
  • [14] Kaldonski, N., Perrot-Minnot, M.-J., Dodet, R., Martinaud, G. & Cézilly, F. 2009. Carotenoid-based colour of acanthocephalan cystacanths plays no role in host manipulation. Proceedings. Biological sciences / The Royal Society, 276, 169–76. 
  • [15] Bauer, A., Trouvé, S., Grégoire, A., Bollache, L. & Cézilly, F. 2000. Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native and invader gammarid species. International journal for parasitology, 30, 1453–7. 
  • [16] Maynard, B.J., Wellnitz, T.A., Zanini, N., Wright, W.G., Dezfuli, B.S. 1998. Parasite-altered behaviour in a crustacean intermediate host: field and laboratory studies. Journal of Parasitology,84, 11062-1106. 
  • [17] Haine, E. R., Boucansaud, K. & Rigaud, T. 2005 Conflict between parasites with different transmission strategies infecting an amphipod host. Proceedings of the Royal Society B, 272, 2505–2510. 
  • [18] Bauer, A., Haine, E.R., Perrot-Minnot, M.J. & Rigaud, T. 2005. The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. Journal of Zoology, 267, 39–43. 
  • [19] Durieux, R., Rigaud, T., & Médoc, V. 2012. Parasite-induced suppression of aggregation under predation risk in a freshwater amphipod. Behavioural Processes, 91, 207–213. 
  • [20] Lewis, S. E., Hodel, A., Sturdy, T., Todd, R. & Weigl, C. 2012. Impact of acanthocephalan parasites on aggregation behavior of amphipods (Gammarus pseudolimnaeus). Behavioural processes, 91, 159–63. 
  • [21] Thomas, F., Adamo, S. & Moore, J. 2005. Parasitic manipulation: where are we and where should we go? Behavioural processes, 68, 185–99. 
  • [22] Lefèvre, T., Lebarbenchon, C., Gauthier-Clerc, M., Missé, D., Poulin, R. & Thomas, F. 2009. The ecological significance of manipulative parasites. Trends in ecology & evolution, 24, 41–48. 
  • [23] Koella, J.C., Sørensen, F.L. & Anderson, R.A. 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proceedings. Biological sciences / The Royal Society, 265, 763–8. 
  • [24] Berdoy, M., Webster, J. P. & Macdonald, D. W. 2000. Fatal attraction in rats infected with Toxoplasma gondii. Proceedings. Biological sciences / The Royal Society, 267, 1591–1594. 
  • [25] Flegr, J. & Hrdy, I. 1994 Influence of chronic toxoplasmosis on some human personality factors. Folia Parasitologica, 41, 122-126. 
  • [26] Lacroix, R., Mukabana, W.R., Gouagna, L.C. & Koella, J.C. 2005. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biology, 3, 1590–1593.


Note : la bibliographie, donnée à titre d'exemple, est très loin de l'exhaustivité, la littérature dans le domaine étant innombrable. 



Sophie Labaude

Essuyons quelques préjugés sur les éponges.

$
0
0
Souvent vues comme des animaux très simples, pour peu qu’on sache que ce sont des animaux, les éponges subissent une grande injustice. Auparavant considérées comme le « chainon manquant » entre les végétaux et les animaux, on les retrouve encore reléguées aux premiers chapitres de tout livre universitaire de zoologie qui se respecte. Et même si cette vision en échelle est (en principe) révolue, le fait que les livres de zoologie commencent généralement par les éponges pour finir par les vertébrés, participe au maintient de cette idée. Pourtant, malgré leur aspect végétatif, les éponges sont bien des animaux. Bon, déjà c’est quoi un animal ? Pour faire simple, c’est un organisme multicellulaire qui se nourrit d’autres organismes, qui produit du collagène, et avec au moins une phase mobile. Quoi, des éponges qui bougent ? Pourtant ce sont des organismes fixés sans muscles ni système nerveux. Mais la larve est ciliée et nage : on a bien une phase mobile. Tout ceci n’est pas très impressionnant mais attendez la suite…

Une belle image d’éponge, parce que les prochaines le seront moins mais plus dans le contexte… Source : éponge jolie.


Trêve de blabla sur cette injustice que doivent essuyer les éponges, j’ai déjà évoqué ça dans un article précédent (cf. article complexité, et ce sera en trame de fond de cet article, vous vous en doutez). Rentrons dans le vif du sujet, ce n’est pas une découverte récente, mais les éponges bougent bel et bien. Oui, je l’ai déjà dit, la larve ne fait pas que larver, mais l’adulte aussi peut se « déplacer » et se contracter. En fait ce comportement est connu depuis longtemps et a même été reporté par Aristote ! Mais depuis tout ce temps, malheureusement, l’origine de ces mouvements est encore mal connue. Cependant, une étude récente parue dans le journal « Invertebrate Biology » (Bond, 2013) décrivait les mouvements d’une éponge calcaire (groupe qui n’a pas été tellement étudié) : Leucosolenia botryoides. Ça a été pour moi l’occasion de me pencher un peu sur le problème et de le partager avec vous. Mais à quoi donc peuvent ressembler les mouvements chez une éponge ? Voyez plutôt :



Impressionnant non ? Oui bon, c’est du “time-lapse”, en gros du super accéléré (pour du time-laps un peu plus esthétique, mais pas dans le sujet, vous pouvez aller voir ici).  Le mouvement est bien connu chez les autres animaux. Il est en général effectué de deux manières : le battement de cils (en milieu aquatique) ou les contractions musculaires. Chez l’éponge adulte, les cils sont connus et sont associés à des cellules appelés choanocytes. Mais autant qu’on sache (ou du moins que je le sache), ça participe aux mouvements d’eau au sein de l’éponge mais pas au mouvement de l’éponge au sein de l’eau. Et malheureusement, il n’y a pas de muscles chez les éponges… Tout ceci reste donc bien mystérieux…

Schéma général d’une éponge. Remarquez l’absence de muscles et de système nerveux. Et pourtant… Source: schéma super sérieux.

Deux théories se sont longtemps affrontées pour expliquer les contractions chez les éponges, mais pour cela il faut revoir quelques points sur la morphologie générale d’une éponge On trouve au sein du « mésohyle », la couche centrale de l’animal, des cellules en forme étoilées appelées « actinocytes ». L’extérieur de l’éponge quand à lui est couvert de cellules appelées « pinacocytes » . En fait le débat a longtemps été mené pour savoir si les actinocytes ou les pinacocytes étaient responsables des contractions. En gros si c’était une diminution de volume ou de surface ! Pour vous donner une orientation du débat, les actinocytes étaient auparavant appelés myocytes de myo = muscle… Un peu biaisé…

Coupe transversale du tissus d’une éponge. L'extérieur est en haut, l’intérieur en bas. « ex » et « en » sont respectivement les exopinacocytes et les endopinacocytes. « ac » sont les actinocytes présents dans le mésohyle. Source: intimité de l'éponge.

Le mécanisme de contraction des éponges a été étudié en détails chez l’espèce Tethya wilhemlma grâce à la microtomographie (une méthode récente d’imagerie) et des coupes histologiques. Ces méthodes ont l’air plus complexes que l’animal lui-même mais laissent penser que les contractions, du moins chez cette espèce, sont majoritairement produites par les pinacocytes, autant au sein des canaux internes (souvenez vous que les éponges ont un ensemble compliqué de canaux) que de la couche extérieure. Alors, les actinocytes servent-ils au mouvement ou non ? Dans tout mouvement musculaire (bien qu’ici ça n’en soit pas), il faut un agoniste pour créer le mouvement, et un antagoniste, pour revenir à la position initiale. Dans ce cas ce seraient les actinocytes qui joueraient le rôle d’antagoniste, mais leur rôle resterait « auxiliaire » dans la contraction (ou plus justement, dans la décontraction).

Ces mouvements ont plusieurs fonctions supposées. Ils semblent périodiques chez certaines espèces et aideraient à l’expulsion de déchets (nourriture et débris cellulaires). Dans d’autres cas ils contribueraient peut-être à empêcher les autres animaux de trop les taquiner. Il a été montré en laboratoire que lorsque l’on retirait les autres animaux, les éponges arrêtaient complètement de se contracter. Vous doutiez-vous que les éponges étaient timides ?


Tethya wilhelma, une éponge qui se contracte beaucoup. En haut, le degré de contraction. En bas les animaux en situation naturelle. Ne sont-elles pas mignonnes les pitites bouboules ? Source : contraction Tethya(en haut), Tethya s'amusant (en bas).

Bon, mais jusque là on a rien de super impressionnant, l’éponge de ménage aussi se contracte quand vous la serrez, et se décontracte ensuite toute seule, rien de plus fou que ce qui traîne derrière votre évier. Ceci dit, comme je suis totalement impartial, je veux vous convaincre que les éponges c’est génial et super vif (ok, relativement… ok, c’est quand même super lent, mais au moins ça bouge). Et pour ça, je vais vous décrire deux modes de déplacement des éponges parmi d’autres.

La première est rigolote et a été décrite récemment (fin 2013, comme quoi ya encore du progrès à faire sur la connaissance de ces animaux). Beaucoup d’éponges possèdent des spicules, de petits éléments squelettiques au sein de leurs tissus. La diversité et la complexité des spicules (voir ici ) est parfois étonnante, et toute personne prétendant que les éponges sont simples (animaux inférieurs, primitifs, basaux, vieux, comme vous voulez), n’a manifestement jamais eu à apprendre le nom des principaux spicules pour un examen. Mon vieux tonton zoologiste « gradiste » théorique (ça m’arrange pour le récit d’inventer un zoologiste super rétrograde) se demandera pourquoi s’emmerder à avoir plein de spicules différents quand on est un animal mou, informe et simple. Moi-même je n'ai pas la réponse, mais en plus d’avoir une fonction de soutien, il a été montré qu’ils ont une fonction de locomotion ! Ils permettraient de s’accrocher au substrat et de se tracter. Des parties entières de Leucosolenia botryoides, constituées d’une multitude de tubes, peuvent se déplacer de concert dans la même direction ! Les mouvements des spicules seraient dus à celui des cellules du mésohyle (la « chair » de l’éponge).

Leucosolenia, une éponge qui rampe grâce à ces spicules (en bas). Des bouquets entiers de tubes (visibles en haut) peuvent bouger tous ensemble ! J’espère que vous êtes ébahis ! Source: bouquet d'éponge (en haut). Ptitspicules (en bas)

L’autre manière de se déplacer est plus complexe. Elle est due à la somme du mouvement de toutes les cellules. L’éponge se déplace alors sur le substrat et au sein de l’animal, c’est un réarrangement total de l’ensemble de l’éponge qui se produit. Il a été montré que la plupart des cellules, les pinacodermes comme les cellules du mésohyle, bougent à différentes vitesses selon leur type cellulaire. Les cellules du mésohyle étant les plus mobiles. Pour résumer, les cellules du mésohyle sont les cellules principalement mobiles, et les pinacocytes sont plus contractiles. On trouve dans le mésohyle au moins quatre types de cellules ayant leur propre morphologie, leur propre répartition, et leur propre vitesse. Autant dire qu’il en faut de l’organisation pour mettre tout ça en mouvement ! Dans ce lent chaos dynamique, il y a aussi les spicules. Bien sûr, les spicules ne bougent pas eux même (ce ne sont pas des cellules, mais des structures minéralisées), mais elles sont entraînées par les cellules du mésohyle. Ces dernières se regroupent autour des spicules et les mènent vers la bordure de l’éponge. Elles s’organisent ensuite de manière parallèle et s’accrochent au substrat (grâce à des cellules qui les entourent) et se positionnent comme des mâts de tente !

Ephydatia fluviatilis,  une des éponges d’eau douce pourtant discrète. En son sein c’est un méli-mélo de cellules bougeant dans tous les sens de manière ordonnée ! Source : l'éponge qui cache bien son jeu.


Alors, quels mécanismes permettent d’organiser tout ça vu que les éponges n’ont pas de système nerveux ? Déjà, on suppose qu’il existe des mécanismes de reconnaissance cellulaire qui permettent aux cellules d’un même type de se regrouper et de bouger de concert. Mais il y a aussi des mécanismes qui rappellent le fonctionnement du système nerveux (quand bien même il n’y en a pas). Certaines éponges (pas toutes, selon les connaissances actuelles) utilisent des potentiels d’action pour permettre la communication entre les cellules, c'est-à-dire des différences de charges électriques entre l’intérieur et l’extérieur de la cellule. Pour l’instant aucune technique ne permet d’étudier correctement ces propriétés chez les éponges. Ceci dit, certaines études d’expression fonctionnelle de gènes (où on joue avec les gènes d’éponges) montrent qu’il y a effectivement, chez l’éponge Amphimedon queenslandica, la présence de canaux à ions sélectifs. Ces canaux laissent passez uniquement certains ions ce qui régule les différences de charges. Cela laisse penser que certaines membranes cellulaires chez cette espèce auraient une spécialisation électrochimique. De plus, un grand nombre de neurotransmetteurs (les molécules impliquées dans le système nerveux) connus chez les autres animaux sont exprimés chez certaines éponges. Au final, morphologiquement, les neurones ne semblent pas exister chez les éponges, mais fonctionnellement c’est une autre histoire qu’il reste à résoudre.

Amphimedon queenslandica, l’éponge qui a presque un système nerveux…. En bas une image des embryons qu’elle incube. Parce que oui, en plus de tout ça certaines éponges accordent des soins parentaux ! Source : l'éponge presque maligne.

Alors quelles réflexions peut-on en tirer ? Quand j’ai commencé à écrire l’article (y’a un bout de temps), j’avais juste en tête de parler de mouvement chez les éponges pour montrer, comme d’hab, que tous les animaux son choupis et cool. Mais entre temps un article est paru dans la célèbre revue scientifique Science (vous pouvez aller voir sur SSAFT), ce qui est une bonne occasion de placer cet article dans une perspective évolutionniste. Pour faire simple, selon cet article paru dans Science, les éponges sont plus proches de nous que les cténaires (les cténaires sont des animaux qui ressemblent superficiellement aux méduses, mais sont organisés très différemment). Pour formuler ça autrement, les cténaires sont les animaux les plus éloignés de nous, contrairement aux éponges (le fait que les éponges soient les animaux les plus éloignés de nous est majoritairement supposé). Tout ça peut sembler obscur, mais les cténaires, en plus d’être magnifiques, ont un système nerveux et des muscles. Ça supposerait deux choses : soit les muscles et le système nerveux sont apparus de manière indépendante chez les cténaires et les autres animaux qui en sont pourvus, soit les éponges ont perdu les muscles et le système nerveux. L’article de Science favorise l’hypothèse que les éponges auraient perdu tout ça. A première vue pourquoi pas, après l’article que vous venez de lire, on peut penser que les éponges ont encore des traces de ces systèmes d’organes. Ceci dit, de mon point de vue, ça me semble étrange de perdre toutes ces structures pour retrouver de manière tordue toutes les fonctions associées. En ce sens, l’hypothèse de la réversion me semble d’autant plus tirée par les cheveux que ce sont des structures importantes, intégrées et qu’en plus la fonction est conservée chez les éponges par des mécanismes divers. Quand à la convergence du système nerveux et musculaire entre cténaires et la plupart du reste des animaux… Ça me semble très peu probable. Mais ce n’est qu’une impression personnelle. Reste que ce sont des résultats récents et qu’il faudrait attendre de voir comment la communauté scientifique interprète et commente ces résultats.

Un arbre résumant les débats récents. Ici la topologie qui a été trouvée dans le dernier article sur le sujet. Beaucoup de zoologistes auraient des choses à redire. C’est un débat passionnant et passionné. Source : l'arbre qui fait parler.

Toujours est-il qu’en biologie les apparences sont trompeuses et qu’il est dur de juger de la complexité d’un organisme qui nous est éloigné avec nos yeux d’humains. Quelle que soit la position phylogénétique des éponges, il n’y a pas de doute qu’elles ont encore beaucoup de surprises à nous dévoiler ! Que ce soit des réversions ou des conditions primitives quant à l’absence de système nerveux et musculaire, elles n’en sont pas moins mobiles et surprenantes à leur manière !

Et puis parceque j’ai mis trop de temps à publier cet article (fêtes, reprise après les vacances etc.), un article sur la sensation chez les éponges est encore paru entre temps : http://www.biomedcentral.com/1471-2148/14/3/abstract, avec une vidéo d’une éponge qui éternue…




Pour aller plus loin :

Un article très récent sur SSAFT sur la position phylogénétique des éponges (et des cténaires) : http://ssaft.com/Blog/dotclear/index.php?post/2013/12/13/De-notre-relation-avec-Bob-lEponge

Un article que j’ai écrit il y a trois ans sur les éponges sur mon blog de zoologie : http://nicobola.blogspot.fr/2010/10/les-spongiaires.html

Un article sur ce blog qui discute, en partie, de la complexité des éponges : http://fish-dont-exist.blogspot.fr/2012/03/evolution-et-complexite-ce-nest-pas.html

Bibliographie :

Bond C. 1992. Continuous Cell Movements Rearrange Anatomical Structures in Intact Sponges. The Journal pf Axperimental Zoology, 263:284-302.

Bond C. 2013. Locomotion and contraction in a asconoid calcareous sponge. Invertebrate Zoology. 132(4):283-290.

Nickel M. 2010. Evolutionary emergence of synapic nervous systems : what can we learn from the non-synaptic, neverless Porifera ? Invertebrate Biology, 129(1):1-16.

Nickel M., Scheer C., Hammel J. U., Herzen J. et Beckmann F. 2011. The contractile sponge epithelium sensu lato – body contraction of the desmonsponge Tethya wilhelma is mediated by the pinacoderm. The Journal of Experimental Zoology, 214:1692-1698.

Ryan J. F., Pang K., Schnitzler C.E., Nguyen A-D., Moreland R.T., Simmons D.K., Koch B.J., Francis W.R., Havlak P,. SmithS.A. et al. 2013. The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution. Science, 342(6164). 



Le naturalisme, un 6eme sens ?

$
0
0
Article écrit à 6 mains, par Nicobola, Boris et Aurélide.

 « Joyeux anniversaire ! »
  
Source

Cette phrase, on l’entend au moins une fois par an. Et qui dit anniversaire dit… oui, gâteau, on sait Donald, tu as toujours faim. Oui, fiesta, on sait Nico, tu aimes faire la bringue !!! Mais surtout… oui Aurélide, tu as raison : les cadeaux !
Souvenez-vous, quand vous étiez petits, ouvrant de grands yeux devant l’amoncellement de présents… Dès lors que vous aviez repéré un emballage qui vous semblait prometteur, plusieurs choix s’offraient à vous. Certains palpaient le papier cadeau, tandis que d’autres secouaient les boites mystérieuses pour essayer d’en deviner le contenu… d’autres encore se précipitaient et arrachaient l’emballage d’un coup sec pour révéler ce qui y était dissimulé !
Mais que viennent faire les cadeaux d’anniversaire sur ce blog ? Eh bien, comme les enfants qui cherchent à deviner ce qui se cache sous les emballages, les naturalistes utilisent différentes techniques pour chercher à savoir ce qu’ils ont entre les mains en faisant intervenir l’ensemble des cinq sens.

Nous allons vous présenter ici comment identifier les êtres vivants qui nous entourent à l'aide de tous les moyens que nous avons à notre disposition, sans avoir besoin d'appareils technologiques perfectionnés.

La vue :

Commençons avec le sens que nous utilisons le plus en tant que primates : la vue.
La majorité des critères qu’on utilise pour distinguer les espèces entre elles sont des critères que l’on peut observer. C’est bien pour ça que tous les guides naturalistes utilisent largement des illustrations et des descriptions visuelles. Cependant les formes et les couleurs ne sont pas les seules caractéristiques visibles des êtres vivants : d’autres indices visuels auxquels on pense moins peuvent nous aider grandement à l’identification de certains animaux, comme le mouvement (déplacement, comportement) ou les traces qu’ils peuvent laisser dans leur environnement ! Voici quelques exemples :

Il existe dans les mares une diversité insoupçonnée car la plupart du temps quasiment invisible tant les animaux sont minuscules. On trouve dans ces mares trois taxons de crustacés majoritaires : les cladocères (dont font partie les daphnies), les copépodes et les ostracodes. Il est parfois difficile de différencier ces tous petits animaux à l’œil nu. Evidemment l'identification est facilitée par l’utilisation d’une loupe. Pourtant, plusieurs autres caractères peuvent permettre de les différencier sans avoir besoin de matériel optique, ni de devoir connaitre la morphologie très précise des espèces. Les cladocères nagent en battant des antennes par petits bonds verticaux tandis que les copépodes nagent horizontalement par à-coups successifs aussi grâce à leurs antennes. Quant aux ostracodes, ils ont plutôt tendance à rester au fond et nagent avec leurs pattes de manière continue. Voilà comment l’observation de leur mouvement peut aider à identifier des organismes.

 Copépodes :
Daphnies :
Ostracodes :


Anecdotes de Nicobola à propos de petites bêbêtes méconnues :

Un autre petit exemple - qui me tient à cœur car j’ai travaillé dessus - ce sont les Limnodriloidinae, qui font partie d'un taxon plus large dit des « clitellates ». Les clitellates contiennent entre autres les sangsues et les vers de terre. Rien de bien appétissant là dedans. On trouve en grand majorité dans ce groupe des petits vers à la limite du microscopique, très difficiles à différencier. En pratique on les colore et on observe au microscope leurs organes génitaux (oui les scientifiques sont des pervers). Plus particulièrement, ce sont des caractères tels que « l’entonnoir spermatique » ou la « vasa deferentia » que l’on observe. Cependant mon chef, lui, pouvait reconnaître les vers vivants (voir même morts) presque toujours au niveau du genre sous une loupe binoculaire ! Pour vous dire, les gens qui savent faire ça dans le monde doivent se compter sur les doigts d’une main. Son secret ? La forme générale certes mais aussi, le mouvement des individus lorsque ceux-ci sont encore vivants. Par exemple les Enchytraeidae (de petits vers blancs très communs dans le sol, comme le ver grindal pour les aquariophiles) ont une carapace plus rigide, leurs mouvements seront donc en général plus lents et moins souples. Les individus du genre Pristina, qu’on trouve souvent dans les mares, sont bien plus actifs et vont se promener un peu partout.

Voici un exemple, un ver du genre Pristina :


Un jour mon chef m’a envoyé en Afrique du Sud chercher (entre autres) ces fameux Limnodriloidinae. Mais comment reconnaître les Limnodriloidinae ? « Facile ! » me dit-il, « Ils sont rouges (comme beaucoup d’autres) et ils s’enroulent sur eux même et explorent les alentours avec leur tête. » Drôle de comportement ! Ca n’a pas raté ! J’en ai trouvé qui répondaient à cette description, que j’ai filmé, identifié comme ce groupe grâce à la vidéo, puis confirmé grâce à la morphologie de l’appareil génital plus tard et au final grâce à l’ADN aussi. Voici une vidéo pour vous convaincre (probablement la plus intéressante que vous n’ayez jamais vue !) :



C'est au tour d'Aurélide de prendre la parole !


Dans un tout autre contexte, on nous apprend en forêt à faire la différence entre des traces de différents animaux, par exemple entre un chevreuil ou un renard. Vous avez aussi peut-être appris à différencier leurs empreintes de pas sur le sol ou à détecter leurs crottes et autres déjections. Vous pouvez par ailleurs lire cet article de Taupo. Mais mis à part les mammifères craintifs qui sortent principalement la nuit, il existe une myriade d’animaux difficiles à trouver dont les traces sont parfois les seules choses qui trahissent leur présence.

Dans beaucoup d’environnements, on peut aussi utiliser le critère des traces pour identifier des animaux. Si vous allez régulièrement à la plage, vous avez sûrement dû voir des pêcheurs chercher des vers pour appâter leurs hameçons à l’aide d’une pelle ou d’une bêche : ils s'en vont chercher des vers marins fouisseurs. Ça n’a peut-être pas l’air, mais finalement, c’est très simple d'en trouver quand on sait ce qu’il faut regarder.
L’arénicole (Arenicola marina) est un ver psammivore, c'est-à-dire qu’il se nourrit de particules accrochées aux grains de sable. Concrètement, il avale plein de sable puis l’estomac fait le tri. Ça leur donne un rôle hyper important puisqu’ils nettoient le sable! Et tout comme les vers de terre, ils laissent des turricules à la surface du sol. Ils aspirent le sable par la bouche ce qui crée une petite dépression à la surface du sol au dessus de leur tête, et de l’autre côté, ils expulsent le sable nettoyé sous forme de tortillon. On peut donc savoir dans quelle direction il est enfoui.
Pas besoin ici d'avoir le ver sous les yeux pour savoir duquel il s’agit !



A gauche : turritule en forme de cœur (St Valentin oblige) laissée par une arénicole (photo prise par nos soins). A droite, schéma de l’arénicole dans son terrier (la tête est à gauche où elle aspire le sable, à gauche, elle expulse), source.
D’autres annélides telles que la célèbre Lanice conchilega (de la famille des Terebellidae parce qu’elles sont très belles) se nourrissent en récoltant les particules fines à l’aide de leurs tentacules. Pour se protéger, elles construisent un tube à partir de débris de coquillages ou de grains de sable agglomérés par du mucus. Seule une petite partie du tube sort du sable et à l’extrémité de celui-ci, des débris de plus petite taille sont utilisés pour construire un panache porte-tentacules. En effet, le ver pose ses tentacules sur chacune de ces extensions qui lui permettent de récupérer la nourriture sur une distance plus longue. Il est assez difficile de sortir l’animal de son tube (il faut un outil pour creuser et être rapide), mais la simple présence de sa construction nous confirme qu’il est bel et bien là.
Puisque des images sont parfois plus parlantes qu’un long discours, voici la partie apparente du tube de la lanice. Si vous y prêtez attention, vous devriez pouvoir en voir assez facilement sur les plages sableuses à marée basse.

Tube de Lanice conchilega sur lequel on discerne bien les morceaux de coquillages grossiers pour la partie principale du tube et les morceaux plus fins pour le panache porte-tentacules. Source


L’ouïe :

Après le sens de la vue, c'est souvent celui de l'ouïe qui est le plus sollicité : en effet, nous l’utilisons pour communiquer dans la vie de tous les jours mais également avec des gens situés à l’autre bout du monde. La nature elle-même n’est pas silencieuse et de nombreux sons peuvent être émis, entendus et décryptés.
Les sons que nous pouvons entendre en nous baladant sont de différents types. Les premiers, sont les sons émis par les animaux pour communiquer entre eux. Il peut s’agir des chants d’alerte « attention, nous ne sommes pas seuls », des chants de parade nuptiale « approche et regarde comme je suis beau gosse », de la communication plus courante entre plusieurs individus (« j’ai faim », « attention intrus »…). Et c’est grâce à ces chants qu’on peut reconnaître les oiseaux de loin, sans avoir besoin de les voir ni de les déranger. Mais il existe aussi les sons liés à l’écologie des bêtes. Un oiseau qui picore dans l’écorce des arbres nous permet, rien qu'à l'oreille, de différencier les espèces. Ainsi, le pic noir et le pic vert ne produisent pas le même son lorsqu'ils martèlent le tronc des arbres pour trouver leur nourriture.


Sources : et
En dehors des oiseaux dont beaucoup de monde sait reconnaître le chant, il est tout à fait possible de reconnaître les différents grands groupes d’insectes (mouches, coléoptères, guêpes etc.) par le son qu’ils produisent. Par exemple le bourdonnement des gros coléoptères est assez typique. Ne vous est-il jamais arrivé lors d’une soirée d’été de laisser la fenêtre ouverte et d’entendre un gros bourdonnement qui vous surprend ? Puis de voir virevolter un gros coléoptère brunâtre ?
Mais pensez surtout à un insecte que vous reconnaissez tout de suite au son du vol. Bien sûr ! Le moustique ! Un compagnon indésirable des chaudes nuits d’été. Vous connaissez probablement tellement bien ce bruit que vous n’avez aucun doute sur son émetteur. Bon, mais si le vol est une des manières d’émettre un son, il y a aussi des insectes qui « chantent ». On parle communément de « chant », mais il s'agit en fait de stridulation : un son produit par le frottement de deux surfaces. Par exemple vous saurez tout de suite faire la différence entre un criquet et une cigale rien qu'en les entendant ! D’ailleurs ce sont deux insectes très différents. Si du point de vue évolutif la cigale est proche de la punaise, le criquet, lui, est proche du grillon. Du coup il est assez facile de différencier les deux stridulations, écoutez plutôt :

Grillon : http://iainpetrie.typepad.com/files/grass1.mp3
Criquet : http://www.grammas-tales.com/stuart/cricket2.wav

Chez le grillon ce sont les ailes de la première paire (rappelons que les insectes ont généralement deux paires d’ailes) qui vont se frotter l’une contre l’autre. Alors que chez le criquet, c’est la dernière paire de pattes (celles qui servent à sauter) qui se frotte contre la deuxième paire d’ailes. Deux mécanismes très différents pour des insectes pourtant proches. Il n’est alors pas étonnant que le son produit soit différent. Les experts de ces groupes d’insectes, les orthoptéristes, se basent énormément sur ces « chants » pour distinguer les différentes espèces. On peut d’ailleurs trouver des CD avec les stridulations de différentes espèces pour s’aider et apprendre. Mieux encore, la décomposition de la stridulation des criquets a même déjà été utilisée pour faire des classifications !

Mais il n’y a pas que les criquets et les grillons qui stridulent ! Par exemple le longicorne aussi le fait, mais contrairement à eux, il ne le fait pas pour la drague mais lorsqu’il est inquiet, regardez et surtout écoutez cet exemple (vous pourrez en plus profiter du bourdonnement typique des coléoptères) :

Cette stridulation est quant à elle provoquée par le frottement des deux premiers segments du thorax (la partie du milieu des insectes qui relie la tête et l’abdomen).
Hormis ces quelques cas, d’autres animaux peuvent être reconnus grâce au son et plus particulièrement grâce aux ultrasons. C’est le cas des chauves-souris. Pour se déplacer, certaines émettent des ultrasons en permanence. Mais pour les entendre, il faut un appareil permettant d’amplifier le son et de le transformer à une fréquence audible pour l'humain. Chaque espèce de chauve-souris émet un son différent, qui permet avec un peu d’expérience de les identifier ! Voici un lien vers le site de VigieNature (dépendant du MNHN) qui explique comment faire, si vous vous sentez l'âme d'un explorateur nocturne.

Le toucher :

Ce sens est moins utilisé par les naturalistes lors de leurs séances d'identification. Cependant certaines personnes sont plus "tactiles" que d'autres et utilisent beaucoup le toucher pour percevoir leur environnement. Le naturaliste peut aussi utiliser ce sens. Alors pourquoi empêcher les enfants de toucher tous les organismes croisés dans la nature ? Il faudrait presque les y encourager, du moment que cela ne porte préjudice ni à l'organisme étudié, ni à l'observateur !

La parole est à Nicobola ! Anecdote directement sortie des tiroirs pour vous !

Il y a un ver bien connu des étudiants, c’est la nereis. C’est un ver très commun notamment dans la vase et le sable. Elle appartient à la famille des Nereidae. Il existe plusieurs espèces très semblables qui peuvent notamment se différencier grâce au nombre d’yeux, de tentacules et de palpes (des appendices sur la tête). Certains se reconnaissent au comportement comme Platynereis qui vit dans un tube. Une autre méthode pour en identifier certains est la texture. Lors d’un stage d’été, je me rappelle avoir farfouillé dans la vase à la recherche de vers. Le professeur à côté de moi m’indique alors qu’il y a probablement deux espèces : une molle, la nereis commune (Hediste diversicolor) et une autre nereis plus ferme, la Perinereis. Et cette méthode fonctionnait bien. Alors je ne peux pas vous assurer que ça fonctionne seulement sur les Perinereis mais voilà au moins une méthode pour savoir qu’on a bien à faire à deux espèces différentes !

A gauche une Perinereis (source), à droite, Nereis ou Hediste  (source). Ouais, ce sont des vers, et les différencier dans la vase est encore pire…

En mer aussi on trouve beaucoup d’animaux dont la forme est assez dure à interpréter, ce qui n'aide pas l'identification ! En effet, certains organismes forment plus des masses informes qu’autre chose (c’est surtout l’impression qu’on peut avoir lorsque nous sommes débutant). Ceci arrive plus souvent chez les animaux qui vivent fixés et filtrent les particules en suspension dans l’eau, notamment les éponges (d'autres infos sur les éponges ici et ici) et les ascidies. Cependant ce serait un peu simpliste car les ascidies et les éponges sont des organismes très différents : l’ascidie est proche de nous évolutivement parlant (par rapport, par exemple à l’abeille) alors que les éponges sont probablement les organismes animaux les plus éloignés de nous (enfin, peut-être pas… allez voir ici ! L’éponge est constituée d'un ensemble de canaux et de cavités soutenus dans certains cas par de petites « spicules », une forme de squelette en kit constitué de petites « épines » non attachées entre elles. Tandis que très schématiquement, une ascidie peut être comparée à un sac semi-rigide ponctué de deux trous qui correspondent à des siphons : un pour aspirer l’eau et un autre pour la rejeter (si vous voulez voir ça de plus près, ici, une vidéo faite par nos soins). Elle a aussi une « tunique » assez rigide qui la protège.
Si les deux peuvent grossièrement être confondues à l’œil nu, au toucher la différence devient plus évidente. Premièrement par un toucher superficiel : l’éponge est spongieuse bien sur ! Elle est molle et va se déformer et reprendre doucement sa forme après avoir été pressée. L’ascidie est plus rigide, elle va se déformer mais va donner une impression bien plus ferme et glissante ! Puis elle va très vite reprendre sa forme. Ensuite en pressant plus fort et en dehors de l’eau, l’éponge va rejeter de l’eau partout autour de la zone que l’on presse contrairement à l’ascidie qui ne va la rejeter que par deux orifices, les siphons. Un dernier indice tactilement plus dérangeant, les éponges avec des spicules peuvent être irritantes ! En effet, en les pressant les spicules vont rentrer dans la peau et gratter ! La douleur elle même est donc un moyen d’identifier une éponge !

A gauche une ascidie coloniale (source), à droite une éponge encroûtante (source)… Le moyen le plus sûr de ne pas confondre est de toucher !

En parlant de douleur et d’identification, voici une autre anecdote : il m’est arrivé une fois de chercher des organismes sur des pontons flottants. En effet, le ponton flottant est toujours immergé mais accessible facilement. On y trouve fixés des animaux que l’on ne rencontre habituellement  qu’en plongée. Dans une de mes folies aventurières, j’ai voulu y jeter un coup d’œil de très près. Je m’y suis donc rendu à la nage mais malheureusement n’y voyais que des algues (le courant était fort et il était difficile de bien voir ce qu’il y avait). Puis le courant m’a poussé sur le ponton, l’épaule entrant en contact avec ces algues… Premier contact, ça brûle ! Je n’y fais pas trop gaffe… Deuxième contact, ça brûle vraiment ! Eurêka ! Ce n'étaient pas des algues mais des Hydrozoaires ! Parce que si ça brûle c’est que c’est un cnidaire ! La famille des méduses et coraux qui ont des cellules urticantes très spécifiques ! Leur forme « végétale » quant à elle, est plutôt commune aux hydrozoaires ! Je décidais donc d’en prendre sur le bord de plage et cette fois-ci, grâce à ma vue j’ai pu confirmer ma supposition et identifier ça comme un joli Tubularia !

Dans le remous des vagues dur d’imaginer que ce magnifique animal… est un animal ! (Source)

A mon tour, à mon tour ! Deux mots avant que Boris ne reprenne la parole après les anecdotes passionnantes de Nico.

Pour continuer dans le domaine du « toucher marin », un petit exemple avec deux petits poissons (oulalalala, j’ai osé prononcer le mot interdit). Il y a quelques années maintenant, j’ai fait un stage sur la faune littorale marine dans lequel j’ai appris énormément sur la biologie, le comportement, ou l’anatomie des bestioles qui composent ces écosystèmes. Comme plusieurs de mes collègues stagiaires, on avait beaucoup de mal à se rappeler la différence entre les blennies et gobies. A part le célèbre argument « parce que je le sais », difficile de mettre des mots sur les différences même si en regardant sur des photos, ce ne sont pas les bêtes les plus mimétiques du monde.
Les confusions étaient surtout due à la biologie de ce type de poisson, les deux espèces étant de petites tailles et se posant préférentiellement sur le fond, dans les recoins ou les flaques. Mais au final, lorsqu’on les touche, pas de doute. Tandis que la blennie est lisse car dépourvue d’écailles (ou écailles rudimentaires), le gobie a des écailles qui lui confèrent un toucher bien plus rugueux. Facile hein ? (Encore faut-il pouvoir les attraper, et alors là, bon courage).

A gauche : Parablennuis gattorugine (une blennie, photo faite par nos soins), à droite, Gobius paganellus (un gobie, source).


Place à la botanique ! Au tour de Boris de parler !

On peut également différencier les plantes à l’aide du toucher. Un premier exemple qui me vient à l’esprit et qui vous parlera très facilement, c’est l’ortie (Urtica dioica) qui est bien connue pour les douleurs qu’elle provoque. Cependant, d’autres plantes présentent des caractéristiques moins douloureuses qui peuvent être identifiées rien qu'avec le toucher. Entre autre, la grande consoude (Symphytum officinale) qui possède sur la tige et les feuilles des poils rugueux très facilement identifiables les yeux fermés :
Source
D’autres plantes comme celles de la famille des Geraniaceae (les géranium) ou les Lamiaceae (où l’on retrouve la menthe, le romarin…) possèdent des poils plus ou moins duveteux et soyeux. Je me souviens, lors d’un stage, je devais apprendre à différencier le Geranium rotundifolium du Geranium molle au stade de plantule, et pour cela, nous n’avions à notre disposition que les tiges poilues. Il a bien fallut que j’utilise ce que j’avais sous la main pour faire la différence entre les deux ! Car ces deux espèces n’ont pas les mêmes poils sur la tige : le G. molle est plus poilu que le G. rotundifolium.
D’autres plantes, comme les Poaceae, s’identifient assez bien rien qu’en passant la main dessus. Ainsi, la houlque laineuse (Holcus lanatus) et le dactyle aggloméré (Dactylis glomerata) peuvent être confondus lorsqu’ils ne sont pas encore en fleur. Pour les différencier, il suffit de passer les doigts sur la tige : la houlque est beaucoup plus douce au toucher que le dactyle.

A gauche le dactyle (source), à droite la houlque (source)
En hiver, la plupart des arbres de nos régions perdent leurs feuilles (on dit que le feuillage est caduc). Seuls les troncs nus restent accessibles pour le naturaliste… mais tout n’est pas perdu, loin de là ! Il est très facile d’identifier les écorces au toucher. Une écorce lisse sera associée au hêtre (Fagus sylvatica) ou au charme (Carpinus betulus) tandis qu’une écorce rugueuse sera associée au chêne (Quercus robur)… Bien évidement, les informations récoltées à l’aide du sens du toucher sont à mettre en relation avec d’autres informations obtenues à l’aide des autres sens pour une identification complète.

Écorce rugueuse du chêne pubescent à gauche (source) et écorce lisse du hêtre (source)

L’odorat :

Après la vue, l'ouïe, le toucher vient l'odorat. Le naturaliste peut être amené à utiliser ce sens bien plus souvent que dans la vie de tous les jours, notamment avec les organismes qu’il peut manipuler. Par exemple beaucoup de plantes et d’animaux rejettent des odeurs particulières pour attirer ou repousser d’autres organismes.

Aurélide a la parole :

Pour reprendre dans les anecdotes littorales, je me souviens d’une sortie à marée basse lors de ce stage sur la faune marine (dont j’ai parlé un peu plus haut). Notre maître de stage nous a appelés, Nico et moi, vers un banc de sable et nous a demandé de sentir, sans se pencher, sans s’approcher du sol, sans creuser, juste là, tous les trois à sniffer l’air. En quelques instants, l’odeur est parvenue à nos narines. Une odeur infecte d’œuf pourri, c’était atroce (et non, ce n’était pas une blague de mauvais goût). Il ne s’agissait pas de matière en décomposition, mais d’un annélide qui porte TRÈS BIEN son nom : Phylo foetida. Un moyen désagréable mais très simple de repérer et identifier la bête.
(D’ailleurs, Nico a fait l’amère expérience de se retrouver avec un de ces vers sous son lit. Les stagiaires avaient trouvé bon de lui faire cette mauvaise blague. Pour le coup, on ne pourra pas mentionner la célèbre phrase « aucun animal n’a été maltraité dans ce tournage », désolés…)

Après cette anecdote malodorante, voici un peu de douceur avec Boris :

Evidemment, on peut reconnaître certaines fleurs à leur parfum : le lys (Lilium sp.), la rose (Rosa canina) et tant d’autres que l’on trouve chez le fleuriste. Cependant, les fleurs ne sont pas les seuls organes odorants. Parfois, elles ne sentent rien, ou bien ne sont même pas présentes. Il faut donc chercher d’autres parties de la plante qui possèdent des critères odorants.
C’est le cas par exemple de la mélisse (Melissa officinalis), qui ressemble beaucoup à la menthe odorante (Mentha suaveolens)… tant qu’elle ne porte pas de fleurs. Il suffit de froisser alors les feuilles de la mélisse entre ses doigts pour se rendre compte qu’elle libère un parfum rappelant celui du citron ! Rien à voir avec la menthe…
A gauche la mélisse (source), à droite la menthe (source).
Le géranium herbe-à-robert (Geranium robertianum) quant à lui est facilement identifiable grâce à l’odeur détestable qu’il répand lorsque ces feuilles sont coupées, ce qui permet de l’identifier facilement parmi d’autres espèces de géranium.
S’il vous arrive de vous promener en bordure de mer, vous avez peut être rencontré cette plante : l’ajonc d’europe (Ulex europaeus), à ne pas confondre avec le genêt à balais (Cytisus scoparius). Bien que ces deux plantes possèdent une morphologie différente, elles ont des fleurs très semblables. Un critère odorant à coup sûr pour trancher est de froisser la fleur entre ses doigts : si elle libère une odeur de noix de coco, c’est que vous avez un ajonc en face de vous !
A gauche du genet (source), à droite de l’ajonc (source).
Une autre plante qui pousse au printemps sur le bord des chemins pourrait passer inaperçue… si elle ne produisait pas une odeur caractéristique dès lors que ses feuilles sont tranchées : il s’agit de l’Alliaire (Allaria petiolata) qui émet une forte odeur d’ail dès que ses feuilles sont coupées. Aucun doute possible alors quant à l’identité de la plante…


Le goût :

Eh oui ! On peut utiliser ce sens pour l'identification des organismes ! Même si on l'utilise tous les jours lorsque l’on mange, il est rarement sollicité pour d'autres raisons. S’il est assez rare d’identifier les animaux par le gout dans un cadre naturaliste (cela signifierait les tuer en général, et tous les animaux identifiables par le gout se retrouvent souvent dans nos assiettes), les plantes et champignons eux peuvent l’être de manière plus aisée ! Et bien qu’un grand nombre d’entre eux soient toxiques pour l’être humain, il n’est pas rare que certains manuels naturalistes conseillent de goûter un petit morceau de l’organisme pour savoir s’il possède un goût particulier (certains champignons non comestibles goûtent fortement le fromage… difficile de se tromper sur l’identification dans ce cas !).
Bien évidement, quand on imagine identifier les plantes au goût, on pense tout de suite aux fruits qu’elles peuvent donner. Mais d’autres parties de la plante peuvent être mastiquées pour aider à l’identification. C’est le cas par exemple du tussilage, ou pas-d’ane (Tussilago farfara) qui peut être difficile à identifier car en été, seules les feuilles subsistent alors que les fleurs sont fanées. En goûtant les feuilles du tussilage, on garde sur la langue un goût de poivre très prononcé.
Une autre plante, Lepidium campestre, possède quant à elle un goût prononcé de… chou-fleur. Même sans les fleurs, il est donc aisé de la reconnaître !

D’autres organismes, qui ne sont pas des plantes mais qui sont aussi des organismes fixés, se reconnaissent souvent à leur goût. Il s’agit des champignons (la plupart des champignons comestibles sont des basidiomycètes). Ainsi, la russule intègre (Russula integra) possède un goût de noisette lorsque sa chair est consommée crue. D’autres champignons peuvent avoir des goûts se rapprochant du poivre, du miel ou encore… du camembert !

Dans le cas des algues, l’espèce Osmundea pinnatifida se reconnait assez facilement par la vue lorsqu’on a un poil d’expérience (par sa couleur, sa forme et aussi l’endroit dans lequel elle se trouve), mais pour l’identifier à coups sûr, il suffit d’en croquer un bout qui a un léger goût d’ail poivré (très bon dans une salade d’ailleurs !).

Les cinq sens nous sont essentiels pour la vie de tous les jours. Si l'un d'entre eux nous fait défaut, il est souvent contrebalancé par le surdéveloppement des autres. Dans le domaine du naturalisme aussi, on retrouve cette complémentarité entre les sens lors de l'identification des organismes, tout comme il existe des cas pour lesquels l'un des cinq sens sera plus utile que les autres. Il y a tout un tas de façons de reconnaître les organismes qui nous entourent. Même si vous n’avez besoin que d’éléments visuels n’hésitez pas à sentir, toucher, écouter, goûter. Cela contribue forcément au processus de mémorisation. D’autant plus que c’est aussi super chouette de pouvoir réunir le plus de critères possibles. Mais aussi, il arrive que la diversité au sein d’un taxon fausse votre identification et vous mette à rude épreuve. Il est alors bien plus sûr de pouvoir combiner le plus d’indices possibles.

Bibliographie :
- Eggenberg S, Möhl A. 2008. Flora vegetativa. Edition Rossolis.
- Knudsen H, Petersen JH. 2005. Les Champignons dans la nature. Edition Delachaux et Niestlé.
- ADER Denis, DUMAS Jacques, HUET Sylvie,  in : DORIS, 27/1/2014 : Lanice conchilega (Pallas 1766), http://doris.ffessm.fr/fiche2.asp?fiche_numero=505
- WEBER Matthias, SITTLER Alain-Pierre, REGUIEG Aedwina, CHANET Bruno,  in : DORIS, 15/1/2014 : Gobius paganellus Linnaeus, 1758, http://doris.ffessm.fr/fiche2.asp?fiche_numero=1181
La majorité de ces anecdotes proviennent de notre expérience sur le terrain ou de ce que nous avons appris en cours, d’où une biblio courte !

Le suicide du criquet, une aubaine pour la forêt

$
0
0

Encore un insecte qui a perdu la tête. Après avoir frénétiquement exploré les alentours jusqu’à la découverte d’une rivière, voilà que le criquet s’y précipite, lui qui n’est pas aquatique pour un sou. Drôle d’idée quand on ne sait pas nager. Serait-ce un acte de bravoure et de dévotion de sa part sachant son rôle potentiellement prépondérant sur la communauté des autres insectes de la forêt, et… sur le maintien d’une espèce de truite menacée ? Heu, mais c’est quoi ce long ver immonde qui s’extirpe onduleusement de l’anus de notre criquet ??

Le criquet vient de sauter dans l'eau. S'extirpe ensuite un long ver de son anus (Source)



Encore une histoire de zombies…    


Avant d’évoquer les conséquences d’un tel geste pour son entourage, un petit rembobinage express s’impose pour comprendre ce qui a poussé notre compère à commettre cet acte désespéré.  

L’histoire commence dans la rivière même, bien loin de notre suicidaire. Parmi la faune foisonnante, on rencontre des nématomorphes, de longs vers de plusieurs dizaines de centimètres, ondulant gracieusement (ou diaboliquement, c’est selon). Ces animaux sont des parasitoïdes, autrement dit ils se développent dans d’autres organismes avec, contrairement aux parasites, une forte tendance à tuer ces derniers… Qui plus est, les nématomorphes disposent d’un cycle de vie complexe, impliquant donc plusieurs hôtes. Les larves vont d’abord infester des insectes que l’on trouve dans l’eau, comme des larves d’éphémères. Alors que ces dernières vont ensuite se transformer, le ver va survivre au processus et pouvoir alors accéder au milieu terrestre. Comme tout se recycle, notre éphémère, même mort, se fera grignoter par quelqu’autre insecte, parmi lesquels des criquets ! Ensuite, l’histoire ressemble drôlement à celle de nos parasites manipulateurs, créatures zombifiantes à qui j’ai récemment consacré tout un article. Si le nématomorphe lorgne le milieu aquatique, nécessaire pour l’achèvement de son cycle et notamment sa reproduction, le criquet a malheureusement pour ce dernier une vie terrestre. Le parasitoïde semble adopter une stratégie plutôt payante pour lui : il prend le contrôle du criquet !

Ca commence par des symptômes assez inquiétants, le criquet se mettant à être beaucoup plus explorateur qu’à la normale, tout en étant, et contrairement à son habitude, subitement attiré par la lumière (Ponton et al. 2011). Pour comprendre les mécanismes impliqués dans les changements de comportements, l’équipe de Biron (2008) a mené une investigation protéomique, mettant en évidence ce qu’il se passe concrètement dans la tête du criquet quand il perd les pédales. Sans surprise, une des protéines dont l’expression est altérée au moment du changement de comportement du criquet dispose justement des domaines classiquement impliqués dans le système visuel. Et puis une fois la source d’eau détectée, le criquet saute dedans, ni plus ni moins. Les chiffres sont impressionnants. Par exemple, Sanchez et ses collaborateurs (2008) ont montré que 80% des criquets Nemobius sylvestris infectés par le nématomorphe Paragordius tricuspidatus se jettent à l’eau, contre 10% chez les individus sains (de corps, mais apparemment pas d’esprit…). Les nématomorphes du genre Gordionus, quant à eux, augmentent de 20 fois les chances qu’un criquet finisse dans l’eau (Sato et al. 2011a). Pour les criquets qui ont la chance d‘échapper à la noyade, mais aussi de survivre à l’extirpation du ver par leur anus, le comportement reviendra progressivement à la normal (Ponton et al. 2011). Quant au nématomorphe, l’idée est de s’extirper de l’insecte avant que celui-ci, dans sa vaine panique, n’attire des prédateurs. Et dans le cas où ver et criquet finissent ensemble dans un estomac, le combat n’est pas perdu pour le parasitoïde qui va utiliser ses talents d’extirpation, mais en s’échappant cette fois par la bouche du prédateur… 




Pour voir d’autres vidéos, notamment un nématomorphe ressortant d’une grenouille, un petit tour sur cet article de SSAFT. Et puis par ici pour une touche d'humour.


L’effet papillon


De nombreuses études ont montré que les parasites et parasitoïdes, malgré l’image négative que le grand public leur alloue, sont souvent d’une grande importance dans l’écosystème. Dans l’exemple des criquets, l’idée la plus intuitive serait que les nématomorphes pourraient avoir un impact sur la dynamique de population des criquets. Mais c’est à une autre échelle que l’on va se pencher maintenant : celle de l’écosystème tout entier.

Faisons un petit tour au Japon où Sato et ses collaborateurs ont étudié (et étudient encore) de très près le rôle des nématomorphes du genre Gordionus. Là-bas vit la truite Salvenicus leucomaenis japonicus, menacée par la surpêche et la destruction de son habitat. Or, les scientifiques se sont vite rendus compte que si un criquet dans l’eau est nécessaire pour le nématomorphe, cela constitue également une aubaine pour les habitants de la rivière, et notamment notre truite. Sato et ses collaborateurs (2011a) ont donc entrepris de mesurer la contribution énergétique apportée par les criquets aux truites. Le résultat est impressionnant : les criquets constitueraient 60% de l’apport de calories annuel des truites, une part très loin d’être négligeable, pouvant même contribuer à la persistance de l’espèce. De plus, cette importance n’est pas qu’une question de proportion puisque d’une part les criquets augmentent la masse totale de nourriture ingérée (les truites mangent moins quand il n’y a pas de criquets dans l’eau), et d’autre part la quantité de nourriture ingérée par les truites est directement corrélée à l’importance de la présence en nématomorphes aux alentours, mais curieusement pas corrélée à la présence des criquets sur les rebords de la rivière, preuve de l’importance du parasitoïde. De plus, la présence de nématomorphes est plus faible dans les plantations de conifères qui remplacent petit à petit les forêts natives (Sato et al. 2011b). Le changement de type de forêt pourrait donc avoir comme conséquence indirecte une diminution de la population de truites, par l’intermédiaire seul de la diminution de la population de nématomorphes…

Cycle de vie du nématomorphe et flux d’énergie autour de la truite. D’après Sato et al. 2011a.


Enfin, élargissons notre champ d’investigations. Les criquets constituent une aubaine pour la truite, notamment puisqu’ils sont des proies faciles, se mouvant maladroitement dans l’eau quand ils ne sont pas déjà morts. La truite va donc délaisser les autres proies potentielles, qui elles sont plus adaptées au milieu aquatique (et donc fichtrement plus fourbes à attraper). Des insectes dont la larve est aquatique, notamment, vont ainsi voir leur succès de passage à la vie terrestre augmenter grâce au répit assuré par les criquets. Ephémères et demoiselles par exemple, vont ainsi pouvoir se métamorphoser, migrant de la rivière vers la forêt, et permettant une présence de proies pour les animaux terrestres. Le tout sans compter que l’écosystème de la rivière est lui aussi chamboulé. Le répit laissé aux invertébrés aquatiques mène également à une diminution de la biomasse en algues, alors plus consommées par ces derniers, bousculant ainsi le flux d’énergie à l’échelle de la rivière toute entière (Sato et al. 2012).


Effet en cascade de la présence de criquets dans la rivière, sur les poissons, les invertébrés aquatiques et les ressources organiques. D’après Sato et al. 2012.


Quand on regarde l’ensemble du tableau, on a l’écosystème de toute une forêt, incluant la rivière, modulé par un ver à priori insignifiant et cantonné dans un autre organisme. Cet effet papillon est tel que Sato et ses collègues ont publié, en début d’année, une étude portant sur le rétablissement à long terme d’une forêt en lien avec les populations de criquets et des nématomorphes. De quoi observer parasites et parasitoïdes d’un tout nouvel œil…



Bibliographie


Biron, D.G., Ponton, F., Marché, L., Galeotti, N., Renault, L., Demey-Thomas, E., Poncet, J., Brown, S.P., Jouin, P. & Thomas, F. 2006. « Suicide » of crickets harbouring hairworms: a proteomics investigation. Insect Molecular Biology, 15, 731-742.

Ponton, F., Otalora-Luna, F., Lefèvre, T. Guerin, P., Lebarbenchon, C., Duneau, D., Biron, D.G. & Thomas, F. 2011. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behavioral Ecology, 22, 392-400.

Sanchez, M.I., Ponton, F., Schmidt-Rhaesa, A., Hughes, D.P., Missé, D. & Thomas, F. 2008. Two steps to suicide in crickets harbouring hairworms. Animal Behaviour, 76, 1621-1624.

Sato, T., Watanabe, K., Kanaiwa, M., Niizuma, Y., Harada, Y. & Lafferty, K.D. 2011a. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology, 91, 201-207.

Sato, T., Watanabe, K., Tokuchi, N., Kamauchi, H., Harada, Y. & Lafferty, K.D. 2011b. A nematomorph parasite explains variation in terrestrial subsidies to trout streams in Japan. Oikos, 120, 1596-1599.

Sato, T., Egusa, T., Fukushima, K., Oda, T., Ohte, N., Tokuchi, N., Watanabe, K., Kanaiwa, M., Murakami, I. & Lafferty, K. 2012. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts. Ecology Letters, 15, 786-793.

Sato, T., Watanabe, K., Fukischima, K. & Tokuchi, N. 2014. Parasites and forest chronosequence: Long-term recovery of nematomorph parasites after clear-cut logging. Forest Ecology and Management, 314, 166-171.



Sophie Labaude

Petit guide de la résistance au froid, partie 2 : les plantes terrestres

$
0
0
Haha, bande de veinards ! Alors que l’Europe se réchauffe (enfin !) sous les rayons printaniers du soleil précoce, au Québec, c’est toujours l’hiver. Le vrai. Celui où les mots gèlent en sortant de la bouche. Et où tes sourcils restent figés lorsque tu fais la grimace, tellement ils sont plein de givre.
Bon, j’exagère… mais à peine. Pour preuve, une photo d’actualité :

Après la pluie, dans les Laurentides

Sophie vous a déjà parlé des mécanismes chez les animaux qui permettent de vivre par très basse température (voir ici). Mais la résistance à l’hiver s’observe aussi chez d’autres organismes qu’on trouve partout et qui, eux, ne peuvent pas se déplacer ou se rouler en boule pour échapper au froid ! Il s’agit des végétaux. Eh oui, vous vous imaginez, vous, passer six mois de l’année à des températures négatives, sans bouger une racine, et revivre au printemps comme si de rien n’était ? Ben voyons donc ! Et ça, tous les végétaux terrestres des milieux tempérés et nordiques (ou presque) sont capable de le faire : ils ont chacun leurs «  stratégies »  pour résister à l’hiver, c'est-à-dire, à survire à une période de froid intense accompagné de gel, et de continuer à vivre normalement après cette période.
Mais d’abord, pourquoi devrait-on résister à l’hiver ? C’est vrai ça, pourquoi les plantes ne continuent pas de pousser même par -30°C ? Après tout, elles sont là toute l’année, alors bon, quelques mois de plus ou de moins… Ah mais ça, c’était sans compter le problème du gel. Comme vous le savez certainement, en dessous de 0°C, l’eau gèle (oui bon, pas toujours), elle passe de l’état liquide à l’état solide. Or, les tissus des plantes terrestres sont très gorgés d’eau : entre l’eau nécessaire à la circulation des sèves, l’eau nécessaire aux réactions métaboliques comme la photosynthèse ou la respiration, les végétaux en sont pleins !  On considère que l’eau entre à 90% dans la composition d’une cellule végétale (Raven et al. 2013). Il est donc logique que si la température descend en dessous de zéro, ils vont geler parce qu’ils ne peuvent pas bouger…  Plus particulièrement, lorsque la température descend vers le point de congélation fatidique, on assiste à plusieurs phénomènes, (résumés par Beck et al. 2004) :

·      une augmentation de la viscosité membranaire(souvenez vous, une cellule vivante est délimitée par une membrane constituée d’une double couche de phospholipides, c'est-à-dire des lipides associés à des groupements phosphates), ce qui engendre une perturbation dans les transferts d’ions et autres molécules entre cellules. La viscosité est l’inverse de la fluidité : plus une membrane est fluide, plus les échanges entre le milieu intérieur et extérieur de la cellule sont rapides ; l’activité des protéines transmembranaires (c'est-à-dire les canaux régulateurs des flux au niveau de la membrane : comme au péage sur l’autoroute !)va être facilité par une plus grande fluidité. La fluidité membranaire influe sur tout un tas d’autres paramètres biologiques permettant la vie de la cellule.  Imaginez vous donc lorsque la membrane n’est plus fluide...

·     un métabolisme ralenti (forcément, si plus rien ne circule correctement, comment voulez vous que les informations/nutriments arrivent à l’heure et au bon endroit ?). De plus, certaines protéines essentielles à la bonne marche cellulaire (appelées les enzymes) possèdent un optimum de fonctionnement à une température bien déterminée : si cette température diminue, l’efficacité de ces protéines va diminuer aussi…

·     un décalage entre l’utilisation de l’énergie lumineux et le stockage de cette énergie (sous forme de sucres) : imaginez vous une centrale à vapeur dont on bouche la sortie, au bout d’un moment, si on chauffe toujours de la même manière, ça va péter… eh bien là c’est pareil : les photosystèmes (voir l’article sur l’automne ici) vont recevoir trop d’énergie et ne pourront pas la transférer aux molécules chargées de s’occuper de tout ce trop-plein (l’eau à moitié gelée empêche les réactions…)

Mais aussi, lorsque l’eau gèle, elle est source de stress hydrique pour les plantes. Attention, quand je parle de stress ici, ça ne concerne pas le stress de tout bon parisien qui se respecte à l’idée de rater son métro : en biologie, on parle de stress pour définir toute situation jugée négative pour le bon fonctionnement d’un organisme (par exemple, prédation, parasitisme, manque de nourriture, etc). Bref, lorsque l’eau gèle, elle n’est plus disponible pour les plantes en tant que ressource ! En clair, de l’eau gelée dans le sol, c’est comme pas d’eau du tout : la plante meurt de soif ! Et donc on observe les conséquences classiques du manque d’eau :

·      diminution du volume de protoplasme (= le milieu intracellulaire, pour faire simple) et formation de cristaux de glaceà l’extérieur de la cellule (dans les parois rigides)
·         turgescence négative (la plante se « fane »)
·         concentration des solutés cellulaires : moins d’eau disponible mais la même quantité de molécules dans la cellule… un peu comme quand on laisse évaporer de l’eau de mer, on récupère le sel au final !
·         arrêt des processus métaboliques
·        changement de potentiel transmembranaire(phénomène très important chez les organismes, entre autre, cela permet la formation de l’influx nerveux chez les animaux). Le potentiel transmembranaire est la différence de charges électriques, présentes sous forme d’ions positifs et négatifs, de part d’autre de la membrane (dans et à l’extérieur de la cellule).
·         désintégration de la double couche phospholipidique membranaire

Autant dire qu’après tout ça, notre pauvre plante a bien du mal à fonctionner…  Mais alors, comment est-ce possible qu’à chaque printemps, les plantes retrouvent leurs belles couleurs vertes ? Voici les différentes méthodes, chez les plantes terrestres, pour continuer à exister même après un hiver rigoureux.

Stratégie d’évitement : je suis trop rapide pour le froid, je ne vois jamais l’hiver !

Certaines plantes ont ce que l’on appelle un cycle de vie annuel, c'est-à-dire qu’elles germent, se développent, grandissent, se reproduisent, engendrent des descendants et meurent en une seule année, sans jamais voir l’hiver. Les tomates (Solanum lycopersicon), par exemple, ou encore, les haricots verts (Phaseolus sp.), sont des espèces annuelles : on les sème et on les récolte au cours d’une seule année (si si, les tomates ne poussent pas en hiver, je vous assure, oui, même les tomates « bio » du supermarché). Une fois qu’elles ont donné des descendants, elles… meurent. Et les graines passent l’hiver dans le sol. Mais elles ne gèlent pas ? Non, car une graine est un organe de résistance hautement déshydraté et ne pourra germer que si la dormance est levée (voir cet autre article, décidément, on a réponse à tout sur ce blog).
Par voie de conséquence, les plantes annuelles n’ont donc aucun mécanisme de résistance contre le froid et le gel, tout simplement parce qu’elles ne le subissent pas directement.

Stratégie furtive : faites comme si je n’étais pas là !

Ça, c’est pour toutes les plantes qui se cachent sous terre pendant l’hiver. On a l’impression que la plante « meurt » mais en fait elle est juste enterrée bien tranquillement à l’abri du gel, et elle attend le redoux pour montrer le bout de son nez. Quelques exemples : les pommes de terre, mais aussi tous les « plantes à bulbes » ornementales : jacinthes, tulipes et autres crocus, ou encore des espèces bisannuelles comme la carotte. Il ne s’agit pas ici de graine, bien que les structures soient aussi en sommeil pendant l’hiver. Les plantes à bulbes vont avoir en général une saison de végétation au printemps, ce qui va leur permettre d’emmagasiner des réserves dans la partie souterraine (qui est une tige modifiée, voir l'article sur les monocotylédones) et d’avoir produit des fleurs et des graines avant l’arrivée de l’hiver. Pour les plantes bisannuelles comme les carottes, au cours de la première année de croissance, la plante emmagasine des réserves dans sa racine (c’est la grosse carotte orange qu’on retrouve dans nos assiettes). Lorsque l’hiver arrive, les parties aériennes meurent (c'est-à-dire les feuilles), ou tout du moins, deviennent très réduites, et la plante passe l’hiver bien tranquillement sous forme de racine dans le sol. Au printemps suivant, la plante utilise ses réserves présentes dans la racine pour donner des fleurs, qui produiront des graines… puis la plante finit par mourir lorsque l’hiver revient.

Organes souterrains de stockage chez les plantes [Source] (a) la carotte sauvage Daucus carota (b) bulbe d'oignon (c) bulbe de Crocus (d) rhizome d'Iris (e) racines tuberculeuses de Dahlia (f) tubercules de pomme de terre Solanum tuberosum

Stratégie de face-à-face : vas-y, l’hiver, même pas peur !

“Brace yourselves, winter is coming.”

On pourrait résumer l’adaptation des plantes au froid par cette petite phrase, tirée de la bien connue série Game of Thrones. En effet, un des mécanismes clés de la résistance des plantes au froid est la préparation à l’hiver. En particulier, une détection du raccourcissement des journées à l’aide des phytochromes (Beck et al 2007), mais aussi à l’aide de la détection de baisse de températures. Un phytochrome, qu’est ce que c’est ? Pour rester simple, disons que c’est une molécule organique complexe (voir là, sur le site du Missouri Botanical Garden) qui permet à la plante de détecter les variations dans l’intensité lumineuse, en termes de durée et de qualité. Ainsi, la plante va pouvoir détecter que les jours raccourcissent à la fin de l’été, par exemple.
Concernant la détection de baisse de températures, c’est une phytohormone (= une hormone végétale), l’acide abscissique abrégé en ABA, qui va induire de nombreuses réactions cellulaires.
Ainsi, Minami et al. (2004) ont montré le rôle prépondérant de l’ABA chez la mousse Physcomitrella patens. En plaçant des cellules de cette mousse en présence d’ABA à température ambiante, la résistance à une température négative suivant ce traitement était d’autant plus grande que les cellules étaient restées longtemps au contact de l’ABA. En clair, si on ajoute de l’ABA à température ambiante, la mousse passe en mode « esquimau » lorsqu’elle est contact du froid par la suite : elle supporte mieux le froid !

Physcomitrella patens [source]

Et donc, l’ABA va engendrer des modifications morphologiques à l’échelle de la cellule : grosse vacuole fragmentée en plus petites vacuoles (souvenez vous, la vacuole, c’est cette poche d’eau présente dans la cellule qui sert un peu à tout), épaississement de la paroi de la cellule… D’autres choses se passent à l’échelle moléculaire dans la cellule, pas forcément lié à l’action de l’ABA (d’après Beck et al. 2007):

·         changement dans la composition des lipides membranaires. Pour rappel, les membranes sont composées d’une double couche de lipides, plus ou moins mobiles et libres entre eux : avec le froid, il faut une membrane plus résistante !

·   atténuation de l’activité des photosystèmes(zones clés permettant à la plante d’utiliser l’énergie lumineuse), mais accroissement de la capacité à utiliser l’énergie lumineuse pour le transport cyclique des électrons et la phosphorylation (= réaction enzymatique impliquant la fixation d’un phosphate sur une molécule, afin d’augmenter son potentiel énergétique, entre autre… un peu comme charger une batterie de téléphone : il faut un apport d’énergie de l’extérieur pour qu’il puisse ensuite servir !). Autrement dit, le peu d’énergie reçu par la plante va être stocké un maximum sous forme de molécules organiques !

·    transition du métabolisme à base d’amidon vers un métabolisme dominé par les oligosaccharides, qui utilise les sucres simples (sucrose par exemple) comme cryoprotecteurs. En clair, en temps normal, la plante fait des réserves de sucres (qu’elle produit à l’aide de la photosynthèse) sous forme d’amidon (voir photo après). Sauf que cette organisation en loooongues chaines implique un risque de gel plus important. Du coup, la plante va stocker ses sucres, non plus en molécules complexes, mais en molécules simples, qui vont être mélangées à l’eau et empêcher celle-ci de geler.

Sucres simples comme le glucose ou le sucrose (en haut), sucres complexes comme l'amidon (en bas) [Source]

Toujours concernant les sucres, Minami et al. (2004) ont constaté que lors de la préparation à l’hiver, la quantité de sucres en solution dans les cellules augmente… mais pourquoi ? Eh bien le sucre agit comme un antigel. On sait en effet que plus une solution est concentrée en soluté, et plus on abaisse le point de congélation. C’est pour ça qu’on met du sel sur les routes : l’eau mélangée au sel a tendance à geler à plus basse température que 0°C. Et donc, dans notre cellule frigorifiée, les sucres en grandes quantités servent à protéger les protéines du gel – on rappelle que les protéines sont des structures très coûteuses en énergie, difficiles à mettre en place, et qu’il est important pour la plante de préserver.
A des niveaux plus aisément visibles, on observe que les plantes se préparent au froid par différents mécanismes : arrêt de croissance, sénescence des feuilles et parfois abscission (c'est-à-dire la séparation de la feuille et de la tige de manière naturelle et programmée – c’est le terme scientifique pour désigner la chute des feuilles - ces phénomènes sont surtout visibles chez les arbres) , formation des bourgeons et dormance. Ainsi, certains bourgeons spéciaux sont mis en place dès l’été : ce sont les seules structures qui resteront vivantes sur la plante pendant l’hiver, mais ces bourgeons seront en dormance. .
En particulier, lors du gel, des cristaux de glace peuvent se former dans les troncs des arbres (Parker 1963). Jusque là, pas de problème, car la sève ne circule pas en hiver : c’est au printemps, lors de la fonte des cristaux, que l’arbre va subir ce qu’on appelle la cavitation. La fonte des cristaux de glace va engendrer la formation de bulles d’air, qui vont bloquer la colonne d’eau formée entre les racines et le feuillage… c’est le principe des vases communicants : si la colonne d’eau est rompue, le transfert ne peut pas s’effectuer. Heureusement, des mécanismes de poussée racinaire et de traction foliaire assurent la mise en mouvement des bulles, voire la dissolution totale de celles-ci dans la sève.
Les bourgeons des arbres sont dormants pendant l’hiver, c'est-à-dire qu’ils n’ont quasiment plus d’activité de croissance. Ils ne peuvent recommencer leur croissance qu’après avoir subit un nombre prolongé de jours de gel et de froid : le retour des jours plus chauds après l’hiver permet la levée de dormance (j’ai déjà évoqué ce terme dans l’article sur les graines : c’est le même principe avec les bourgeons). Les bourgeons sont également protégés par des écailles pendant l’hiver : ces écailles vont tomber au printemps lorsque les bourgeons « explosent » : on parle de débourrage. C’est toute la difficulté pour l’arbre de ne pas redémarrer son activité juste au sortir de l’hiver, là où les jours sont doux mais où il peut encore geler. Si l’arbre n’a pas subit assez longtemps le froid à la fin de l’automne et au début de l’hiver, il est plus enclin à redémarrer précocement au sortir de l’hiver… et risque de geler en cas de chute brutale des températures. 

Et après ? Que faire lorsqu’on a subit six mois de gel intensif ?

Certaines plantes refusent d’attendre le dégel complet. Qu’à cela ne tienne, je vais faire fondre la neige qui me recouvre ! ben voyons donc, et la marmotte… enfin bref. Il s’avère qu’il existe bien certaines plantes qui pratiquent la thermogenèse. Kesako ? Comme son nom l’indique, c’est un processus de production de chaleur. C’est le cas du chou puant (de son nom scientifique Symplocarpus fœtidus), qui va faire fondre la neige qui l’entoure (Gibernau & Barabé, 2007) pour pointer sa fleur à la surface !

Symplocarpus foetidus au printemps [Source]

Pour faire simple, la chaleur est produite par la mitochondrie (autrement appelée centrale énergétique de la cellule : c’est là entre autre que se produit la respiration cellulaire). Et par la suite, la chaleur est dispersée dans l’environnement, à un tel niveau qu’elle fait fondre la neige aux alentours… Le chou puant peut ainsi faire augmenter sa propre température jusqu’à une trentaine de degrés ! En plus, la chaleur disperse l’odeur de charogne produite par la plante, ce qui attire les mouches, qui sont ses pollinisateurs attitrés.

Le mot de la fin

Fait que pour conclure, bah, les plantes, elles sont crissement bien adaptées au froid ! Mais ‘stie qu’y fait frette icitte, moi j’aimerai quand même retrouver un peu de printemps, j’ai pas autant de résistance au froid !!!

Bibliographie

Gibernau & Barabé. 2007. Des plantes à sang chaud. Pour la science, n°359 - septembre 2007. http://www.pourlascience.fr/ewb_pages/a/article-des-fleurs-a-sang-chaud-19419.php 

Beck, Heim, Hansen. 2004. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29(4), 449–459

Minami, Nagao, Arakawa, Fujikawa, Takezawa. 2006. Physiological and morphological alterations associated with development of freezing tolerance in the moss Physcomitrella patens. Cold hardiness in plants : molecular genetics, cell biology and physiology– ed. Chen et al. – p. 138

Beck, Fettig, Knake, Hartig, Bhattarai. 2007. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 32(3), 501-510

Parker. 1963. Cold Resistance in Woody Plants. Botanical Review. 29(2), pp. 123-201

Raven et al. 2013. Biology of plants. 8ème édition.

Entourloupes naturalistes : des serpents imposteurs

$
0
0

Crédits : R. Bartz


« Il devait être et fut, pour l'Eve ennuyée de son paradis de la rue du Rocher, le serpent chatoyant, coloré, beau diseur, aux yeux magnétiques, aux mouvements harmonieux, qui perdit la première femme » [Une fille d'Eve (1834) - Honoré de Balzac]


Et si LE serpent, celui responsable de tous les maux de l’humanité, celui pour lequel nous croupissons sur Terre dans la misère et la douleur, loin des fruits délicieux du Paradis... Et si cette créature rampante vicieuse que tout le monde accable et dont le nom résonne aux oreilles comme une menace, une injure… Et si ce serpent… n’en était pas un ? C’eut été le plus beau subterfuge pour la vile créature qui nous a fait tomber du ciel : se faire passer pour un autre, jeter la pierre à tout jamais sur les vrais serpents, les faire à sa place les coupables éternels de la misère humaine…

Chute et expulsion d’Adam et Ève du paradis terrestre. Crédits : Michelangelo.

S’il y a bien une chose à retenir en biologie, c’est que les apparences sont parfois trompeuses. Avoir des ailes ou un bec ne fait pas de vous un oiseau. De même, une créature rampante, sans pattes apparentes, longue, pleine de vertèbres et d’écailles, n’est pas forcément un serpent. Les imposteurs sont nombreux, aussi avant de vous donner quelques exemples, tâchons de définir ce qu’est un serpent.

Selon Wikipédia, les serpents « sont des reptiles au corps cylindrique et allongé, dépourvus de membres apparents ». Mais surtout, ils « forment le sous-ordre des Serpentes ». Car c’est bien ça l’information importante. Les serpents forment un groupe, c'est-à-dire qu’ils ont un ancêtre commun, et qu’ils sont donc tous proches parents entre eux. Les serpents font partie de l’ordre des squamates, un groupe qui contient la majorité de ce qu’on appelle traditionnellement les reptiles, et qui comprend beaucoup d’autres espèces comme des lézards, iguanes ou caméléons. Les relations phylogénétiques (ou relations de parenté) entre toutes ces espèces ont fait l’objet, et feront encore l’objet, de nombreuses études, aussi les classifications sont-elles variables selon les résultats considérés. Selon une des dernières études publiée cette année, voici (en simplifié) l’arbre des squamates :


Relations phylogénétiques simplifiées, d’après la publication de Reeder et al. 2015.


Ainsi, tout comme un régime alimentaire ne suffit pas à garantir l’appartenance à un groupe (petite piqure de rappel), les caractéristiques physiques en tant que telles ne déterminent pas à elles-seules ce qu’est un serpent, contrairement aux relations de parenté. Et si l’arbre phylogénétique nous apprend que les serpents sont proches des Anguimorpha (les varans par exemple) et des Iguania (caméléons et compagnie), on se rend rapidement compte que d’autres prétendants au titre de serpent, de par leur physique, en sont du coup écartés. Voici quelques-uns de ces imposteurs…


Les amphisbènes ne se donnent pas tant de peine


Pas besoin de chercher bien loin pour trouver les premiers imposteurs : on repère tout de suite, sur l’arbre phylogénétique, ces espèces de gros vers serpentiformes que sont les amphisbènes. Peu connus, si ce n’est sous leur homonyme mythologique, ces animaux sont adaptés à une vie souterraine. Ils creusent des galeries dans la terre, le sable ou le tapis végétal, et passent presque tout leur temps sous la surface, notamment à la recherche d’insectes et larves en tous genres à se mettre sous la dent. Hormis une famille qui a conservé des pattes, l’absence de membres propres à creuser des galeries relègue ce rôle à leur tête. Au point que pour certains, la forme rappelle fichtrement celle d’une pelle.


Tête et crâne, parfaitement adapté pour creuser, de l’amphisbène Leposternon microcephalum. Crédits : Harvard College et J. Maisan

Les amphisbènes ont développé d’autres adaptations à ce mode de vie, tels des narines dirigées vers l’arrière, des yeux recouverts d’une peau translucide, ou encore, comme on peut le voir ci-dessus, une mâchoire inférieure en retrait, avantage certain pour ne pas s’en mettre plein la bouche en creusant. Comme ces énergumènes ne sont pas naturellement présents en France (on les retrouve essentiellement dans les régions tropicales et subtropicales), voici quelques photos pour apaiser votre curiosité.


Dans l’ordre : Amphisbaena fuliginosa, Amphisbaena alba, Blanus cinereus (que l’on trouve notamment en Espagne) et Bipes biporus (connu pour ses membres antérieurs dotés de griffes qu’il utilise pour creuser). Crédits : B. Dupont, D.B. Provete, R. Avery et M. Harms


Y’a comme anguille sous roche chez les lézards


Retour sur l’arbre de famille des squamates. Il y a un groupe qui paraît louche, de par son nom… Si les Anguimorpha contiennent bien les varans, ce n’est sans doute pas eux qui sont « de la forme d’un serpent » (selon la traduction latine d’Anguimorpha). Au milieu des lézards en tous genres (le groupe contient par ailleurs de très notables lézards venimeux) se cachent donc des créatures un brin plus serpentiformes, et pourtant bien connues : ce sont les orvets et affiliés, les bien (sur)-nommés lézards apodes (« sans pattes »).

Ainsi, contrairement aux idées reçues, les orvets relativement courants de nos jardins s’appelleraient davantage des lézards que des serpents. Et ce en dépit de leur corps longiforme recouvert d’écailles et leur langue qu’ils utilisent à s’y méprendre comme un serpent. Pourtant quelques différences sont notables. Ainsi, à la mode d’un lézard, les orvets sont capables de se séparer de leur queue pour échapper à un prédateur.

L’orvet Anguis fragilis, avec sa pupille bien ronde, paraît un peu plus sympathique que certains (vrais) serpents. Ils s’en distinguent notamment par la présence d’une paupière (Crédits : Marek Bydg et Waugsberg)


Si les orvets de nos régions (Anguis fragilis) sont de taille modeste (généralement moins de 50 cm), d’autres lézards anguimorphes peuvent atteindre un mètre de longueur, tels que le Scheltopusik (c’est bien son nom commun… son nom scientifique Ophisaurus apodus est presque moins barbare) ou le serpent de verre oriental Ophisaurus ventralis (qui n’est, malgré son nom, toujours pas un serpent) originaire d’Amérique du Nord.


Ophisaurus apodus et Ophisaurus ventralis. On en oublierait presque que ce ne sont pas des serpents… (Crédits : Ltshears et Fl295)


Les faux serpents sont partout…


Tels les serpents pour lesquels ils essayent de se faire passer, les lézards apodes s’immiscent partout, y compris en dehors des Anguimorpha. Ainsi, on en retrouve dans le groupe des Scincoidea (voir arbre ci-dessus) à travers le genre Chamaesaura. Bien que possédant des pattes, celles-ci sont si peu développées qu’on peine à les voir si l’on n’y fait pas attention. Autre groupe notable du côté des geckos, ces étranges lézards réputés pour leur capacité à marcher sur n’importe quelle surface verticale. Leurs proches cousins, les Dibamidae, revêtent en effet une apparence proche de celle des amphisbènes, avec des femelles complètement apodes, tandis que les mâles possèdent des vestiges de pattes. Enfin, le groupe même des geckos, renferme plusieurs espèces de serpentiformes, à l’instar du genre Delma qui contient une vingtaine d’espèces, toutes endémiques d’Australie.


Un représentant de tous les groupes cités ci-dessus : un Chamaesaura, Chamaesaura sp. (Crédits), un Dibamidae, Anelytropsis sp. (Crédits : T.M. Townsend), et deux espèces de geckos, Delma impar et Delma demosa (Crédits : Benjamint444 et JennyKS).


… Y compris parmi les parents des grenouilles


Vous l’avez compris, des reptiles qui se cachent derrière des faux airs de serpent, il y en a à foison. Ce ne sont pas les seuls à jouer l’illusion. Bien sûr la recherche d’analogies pourrait aller loin, nombreux sont les animaux au corps allongé et dépourvus de pattes. Sans vous faire l’offense de comparer les serpents aux vers de terre, il est pourtant un groupe de vertébrés qui vaut tout de même le coup d’être cité : les gymnophiones (plus connus à travers un de leurs sous-groupes, les cécilies). C’est du côté des amphibiens qu’il faut se pencher pour admirer ces créatures étranges. Et s’étonner de leurs similitudes avec les serpents.

Les gymnophiones sont des animaux fouisseurs, dont la longueur peut être tout à fait honorable, certains dépassant aisément le mètre. A l’instar des serpents, ils peuvent être dotés d’écailles, selon les espèces. Mais là où ils les surpassent, c’est dans la particularité que l’on attribue généralement aux serpents : la perte secondaire des membres. Cette perte s’est effectuée de manière indépendante (on parle de convergence) entre les vrais serpents et les gymnophiones. Là où les derniers s’illustrent, c’est que, contrairement aux serpents, il n’y a pas même de trace embryonnaire des pattes disparues, témoignant d’une perte probablement très ancienne. Ironie du sort, les gymnophiones constituent une des proies naturelles des serpents…


Deux espèces de cécilies : Ichthyophis glutinosus (Crédits : K. Ukuwela) et Siphonops paulensis (Crédits : A. Giaretta)


Tous ces exemples nous auront appris au moins une belle leçon : l’habit ne fait vraiment pas le moine. Nous ne sommes d’ailleurs pas plus avancés sur l’identité de la perfide créature du début des temps : serpent ou être plus vil encore ? La Bible nous donne pourtant un indice qui pourrait innocenter pour de bons les véritables Serpentes : si ce n’est sous le coup du courroux de Dieu, l’animal qui a corrompu Eve avait des pattes…



Bibliographie


Reeder, T.W., Townsend, T.M., Mulcahy, D.G., Noonan, B.P., Wood Jr., P.L., Sites Jr., J.W & WiensIntegrated, J.J. 2015. Analyses resolve conflicts over Squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE, 10(3): e0118199.

Pyron, R.A., Burbrink, F.T. & Wiens, J.J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13:93.



Sophie Labaude

L'histoire poilante des cils

$
0
0
 

« On a tous besoin d’un plus petit que soies »

Si vous pensez que cette phrase est mal orthographiée, c’est que vous ne connaissez pas encore l’histoire qui va suivre.


Il était une fois, un cil d’œil du nom d’Imbé, qui se voyait sur le déclin. De toute sa vie, il n’avait vu qu’un œil, et pourtant la vision n’était pas sa vocation. Il avait ouïe dire, grâce au bouche à oreille, que de minuscules cils peuplaient le conduit auditif et permettaient d’entendre. Imbé savait très bien qu’il faisait partie de la famille des poils, des soies … des phanères en somme. Mais il ne l’assumait pas tellement. Imbé, cil d’œil, voulait voir ce que c’était d’entendre.

La magie du Web permit à Imbé de rencontrer Louis, cil de l’oreille interne. Ils s’entendirent tout de suite très bien et décidèrent de se voir. Louis apporta un livre à Imbé et le remercia : « Sans toi et les autres cils d’yeux, on n’aurait jamais pu bien voir toutes les belles images de microscopie qui ont permis de comprendre d’où nous venons nous, les stéréocils. Bien qu’appelés « cils » nous n’avons pas grand chose en commun avec les cils primaires et les cils vibratiles. Lis donc cet article Imbé, cil d’œil ! »

Figure 1 : Stéréocils trouvés à la surface des cellules de la cochlée observés en microscopie électronique à transmission (2µm de long). Université du Queensland.


Ce fût un jour important pour Imbé qui, grâce à Louis, comprit que chaque structure d’un organisme, si petite soit-elle, résulte de millions d’années d’évolution au cours desquelles elle a su se rendre utile.
Fort de son expérience, Imbé se laissa partir paisiblement et vint se planter dans ma cornée, déclenchant une crise de larmes.
Fin.


Ah les cils ! Arme de séduction pour les uns, moyen de locomotion pour les autres. Bien que portant le même nom, nous parlons ici de deux structures bien différentes : à commencer par leur taille. Le cil que l’on voit est un poil poussant à l’extrémité des paupières et ayant pour premier intérêt de limiter l’entrée de corps étrangers dans les yeux. Ces cils qu’on nous convint de vouloir plus longs, plus étoffés, plus sombres, etc.

Si on s’intéresse aux cils en tant que structure cellulaire (mesurant 10µm soit 1000 fois plus petit que le cil des paupières) on apprend qu’il existe un groupe d’organismes appelé « ciliés » … mais si vous pensez qu’eux seuls portent des cils, vous vous fourrez le doigt dans l’œil. En effet ils arborent, à leur surface, des cils vibratiles à au moins un stade de leur cycle de développement. Ces cils-là ont pour premier avantage de permettre de créer des flux d’eau autour de la cellule et ainsi de se déplacer pour les formes nageuses ou de balayer les alentours afin d’apporter vers elle des proies et autres éléments nutritifs.

Cependant, ce petit organe cellulaire à l’utilité mécanique incontestable a fait son chemin au cours de l’évolution ! Elle est également trouvée chez des bébêtes grand-format, incluant Homo sapiens, où le cil, parfois appelé flagelle (selon sa taille et sa capacité de mouvement) remplit de nombreuses fonctions et définit même certains types cellulaires au rôle fondamental avec des conséquences importantes lorsque leur structure est altérée.
Oui, je parle bien du spermatozoïde.


Pour bien comprendre comment fonctionne le cil, un point technique s’impose. Le cil est supporté par un échafaudage interne formé de tubes. Un tube de tubes (les microtubules) pour dire vrai, appelé axonème.

Figure 2 : Les protéines de tubuline forment les microtubules qui forment l’axonème qui supporte le cil.


On y voit nettement plus clair lorsqu’on sait qu’il existe deux types de cils qui ont des rôles distincts. Le cilium primaire non motile est un capteur avant tout. On le trouve à la surface de la grande majorité de nos cellules, en un unique exemplaire par cellule. Les chercheurs spécialistes ont pour habitude de parler du cil primaire en tant qu’antenne cellulaire, et pour cause. L’axonème étant enrobé de la même membrane qui recouvre le reste de la cellule, il va également porter les mêmes protéines de surface : les récepteurs membranaires. Ainsi, le cil aura la capacité de sonder le milieu extérieur de la cellule où il détectera par exemple des molécules qui circulent. 

De manière intéressante, ce sont surtout les variations physiques plus que chimiques qu’il pourra capter. De la même manière que le vent fera onduler les épis de blé dans les champs, le flux des liquides circulant sur les cellules fera plier les cils primaires. La détection et l’interprétation de ces flux sont des évènements majeurs dans de nombreux processus qui seront exposés plus bas. Il est pertinent de remarquer que la présence de ce type de cils est observée dans la plupart des types cellulaires de vertébrés. Et très récemment, une équipe canadienne a mis en évidence leur existence chez les éponges (ça avait par exemple été évoqué ici), montrant à cette occasion leur capacité à répondre très finement aux variations de flux d’eau. 

Figure 3 : Un cil (c) en microscopie électronique en transmission avec le corps basal ou basal body (bb) La plupart des corps basaux, ainsi que d’autres structures proches : les centrioles, sont composées de 9 triplets de fibres de tubuline et ceci est vrai pour les unicellulaires avec noyau comme pour l’être humain. Le cil lui-même est composé de 9 doublets qui s’étendent à partir des triplets. De plus, il y a 2 fibres au centre de l’axonème (ax). Par R. Allen grossi 16,000X. Barre = 0.5µm. Publié dans J. Protozool en 1967.

Le cil motile est champion du battement de cil. En effet, il bouge de manière active. Pour ce faire, des molécules présentes à la base du cil appelées dynéines vont consommer de l’énergie pour passer d’un doublet de microtubule à l’autre. Or, les microtubules étant maintenus ensemble, ils ne pourront pas coulisser, provoquant une traction sur l’axonème et une courbure du cil (voir éventuellement cette vidéo à 2:40). Ceci se faisant de manière régulière, le battement du cil observera un certain rythme qui sera généralement synchronisé avec les cils voisins. Dans le cas de cellules à flagelles multiples, cette synchronisation est d’autant plus importante qu’elle influence l’orientation du déplacement de la cellule qui les porte.

Parmi les cellules qui se déplacent grâce aux cils on peut citer la paramécie : un modèle bien connu des salles de classe. Le prof laisse de l’eau croupir quelques jours et rapporte ça :

Figure 4 : Photos en microscopie optique à contraste de phase de discovermagazine.com, en microscopie à fluorescence de J. Beisson et F. Ruiz (Génoscope) et coupe de cils à la surface de la paramécie observée en microscopie électronique à transmission par l’équipe d’Anne-Marie Tassin (CNRS de Gif-sur-Yvette).


Durant les millions d’années qui nous séparent de l’apparition de la première ébauche de cil, de l’eau a coulé sous les ponts, d’ailleurs il n’y avait pas encore de ponts que les ancêtres des paramécies pataugeaient déjà dans les cours d’eau aux côtés de nos ancêtres à nous.

Paramecium tetraurelia est un organisme unicellulaire qui mesure 300 µm de long environ. Sur la figure 4 ci-dessus les cils ont été marqués en vert fluo afin de les identifier. Les cils de la paramécie sont très organisés à sa surface. En effet, si on marque le corps basal du cil (voir bb pour « basal body » dans la figure 3 encore plus haut) on constate une impressionnante régularité dans la disposition des cils. En fait, les cils de P. tetraurelia lui permettent de se propulser comme une torpille à condition que ce ne soit pas des mi-cils… Effectivement, la moindre perturbation de cette organisation, même nanométrique, va avoir de l’impact sur le déplacement de la paramécie. De cette manière, de nombreuses mutations de l’organisation du squelette cellulaire ont été identifiées en analysant la nage de la paramécie. 


Il y a également des végétaux qui vont et qui viennent, voyez chlamydomonas :


Cette algue de 10µm environ possède deux flagelles qui lui permettent de se déplacer. En termes de structure moléculaire, les flagelles peuvent réellement être considérés comme des cils motiles longs. De la même manière que pour la paramécie, les mutations affectant la structures des flagelles seront très facilement détectables en catégorisant les modes de déplacement, parfois laborieux.


Et chez les pluricellulaires alors, me direz-vous ?

Homo sapiens est un exemple parmi d’autres. Les cils motiles présents à la surface des cellules de la surface interne des poumons (formée de cellules de type « épithéliales ») ont été très étudiés car ils sont impliqués dans des maladies. En effet, celles-ci sont causées par un problème d’organisation des cils et sont par conséquent appelées ciliopathies (« myopathies » pour les pathologies musculaires, « ciliopathies » pour les pathologies ciliaires … vous suivez ?). Par exemple, la dyskinésie ciliaire primitive (« dys » pour le défaut et « kinésie » pour le mouvement. Vous suivez toujours ?) est une maladie causée par une altération génétique des molécules structurant le cil où c’est le système respiratoire qui souffre le plus de la micro-malformation. Vous suivez toujours ? Parce que le cil, lui, ne suit pas du tout, entraînant de lourdes conséquences. Son battement défectueux nuit à l’évacuation du mucus pulmonaire conduisant, comme pour la mucoviscidose, à de fréquentes infections respiratoires.

Figure 5 : On visualise le mucus non-évacué aux abords des cils à l’intérieur des poumons d’une malade en microscopie électronique à balayage par Estelle Escudier (Inserm U.933)


Figure 6 : Cils portant des récepteurs dans leur membrane qui pourront capter des molécules dans le flux extracellulaire.



Et je crois que c’est t…

Ah non, attendez ! J’étais à un cheveu d’oublier de mentionner le mignonissime Schmittea mediterranea : un animal qui mérite bien quelques lignes dans un article sur les cils. En effet, en plus d’être capable de se régénérer totalement à partir de n’importe lequel de ses fragments (regardez-ça, c’est à couper le souffle), ce ver plat ne nage pas, il glisse (voir aussi).

Il glisse grâce à des cils qui recouvrent toute sa surface inférieure. Vous vous en doutez, le moindre micromètre de décalage dans l’arrangement des cils va avoir de l’impact sur le déplacement de la bête. Et voici ce que ça devrait donner et ce que ça peut donner :

Déplacement normal « glisse » 


Déplacement causé par une mutation du cil qui pourrait s’apparenter à celui d’une limace
Vidéos par Juliette Azimzadeh (Institut Jacques Monod)


En résumé, derrière un nom peuvent se cacher de nombreux concepts : le cil oculaire est un poil incomparable au cil auriculaire qui contient de fins filaments ou aux cils primaires et motiles qui contiennent des tubules. Cependant, quels que soient sa taille ou l’organisme qui le porte, l’important pour un cil c’est qu’il soit docile.


Références :


« Comment se forme un cil cellulaire ?» Bénédicte Salthun-Lassalle, PourLaScience.fr 2010

Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. Danielle A Ludeman, Nathan Farrar, Ana Riesgo, Jordi Paps and Sally P Leys. BMC Evolutionary Biology 2014, 14:3 doi:10.1186/1471-2148-14-3

Tracing the origins of centrioles, cilia, and flagella. Zita Carvalho-Santos, Juliette Azimzadeh, José. B. Pereira-Leal, and Mónica Bettencourt-Dias. JCB vol. 194 no. 2 165-175 The Rockefeller University Press, doi: 10.1083/jcb.201011152

Le Cil : Succès évolutif d’une alliance sensori-motrice. Mme Christine PETIT, Collège de France, 2007.




Un petit mot sur l'auteur du billet : 

Karen Uriot (suivez-la sur twitter ici : @karenn55) sera prochainement docteure en Biologie Cellulaire. Elle dit avoir deux guides dans la vie : le visionneur qui a inventé la Microscopie et le créationniste du Calembour. Passionnée par toutes les Sciences, elle est ravie de pouvoir apporter sa petite contribution au web scientifique francophone.

Aventures brésiliennes – L’herbier de Rio de Janeiro

$
0
0
Salut tout le monde ! ça faisait un boutte que je n’avions point rédigé icitte (okay jvais arrêter de parler comme ça, ça va m’énerver). Et pour cause : dans le cadre de mon doctorat, je suis parti au Brésil. Voui voui tout à fait. Là. En vert.  

Le Bresil [source]
Et même plus particulièrement, à Rio de Janeiro. Eh ouais, rien que ça.  

Rio de Janeiro [source]

Mon sujet de doctorat, pour faire cours, s’intéresse à la biogéographie d’un genre de Légumineuses, le genre Crudia, qui se retrouve en Amérique du Sud, en Afrique de l’Ouest et en Asie du Sud est. Il faut savoir qu’à cette échelle taxonomique, ce type de répartition est plutôt atypique. De plus, ce genre est très diversifié, comparé aux autres genres évolutivement proches. Je cherche à savoir s’il existe un lien entre cette répartition peu courante et très étendue, et cette diversité relativement importante.

Bref. Je vais passer un peu plus de trois mois (au Brésil hein, pas à Rio), ça va en faire des aventures botaniques à raconter ! Commençons dès à présent avec la présentation d’un travail que bon nombre d’étudiants et chercheurs en botanique systématique doivent réaliser, à un moment ou un autre de leur carrière : j’ai nommé, le travail en herbier.

Un herbier, qu’est ce que c’est ? Ça peut décrire plusieurs choses. Par exemple, on peut parler d’un herbier pour désigner une collection de plantes pressées et conservées par un botaniste amateur. Mais la plupart du temps, un herbier désigne une institution scientifique qui étudie, classe et stocke des spécimens de plantes séchées, classées sur des étagères. Ce sont en majorité des plantes entières ou des portions de branches comportant des feuilles, parfois des fleurs et des fruits. On y trouve aussi des portions de spécimens conservés en alcool, comme les fleurs ou les fruits. En particulier, ces herbiers sont les lieux où sont conservés les types (voir paragraphe suivant, pas de panique !) des espèces décrites par les scientifiques.

Un type, qu’est ce que c’est ?

Ce que l’on appelle un type dans le jargon botanique (et en taxonomie et nomenclature en général), c’est un individu, ou dans le cas d’une plante, une portion de l’individu, qui sera considéré comme porteur de tous les attributs diagnostiques permettant d’identifier une espèce, c'est-à-dire l’ensemble des caractères propres à une espèce et qui permettent de la différencier des autres espèces. Dans les herbiers et dans les collections taxonomiques, les types sont reconnaissables à la présence d’une étiquette rouge signifiant que c’est un spécimen clé. Par exemple, vous pouvez observer ici le type de Crudia klainei, une des espèces sur lesquelles je travaille.

Eh oui,  c’est une branche avec des feuilles sèches, toutes racornies. C’est en général ce qui arrive quand on fait sécher des plantes entre deux feuilles de papier, c’est pas forcément joli-joli à voir. Mais dans ce cas, quel intérêt à avoir un spécimen tel que celui-ci quand on pourrait avoir des photos à la place ? Tout simplement parce que d’une part, ce spécimen est historique et que la description de l’espèce telle qu’elle a été validée dans un journal scientifique est étroitement associée à ce spécimen en particulier, et que d’autre part, il est bien plus facile de travailler sur un spécimen réel que sur une photo. Car avec un spécimen, vous pouvez tourner les feuilles (avec délicatesse, c’est fragile !), réexaminer tel ou tel caractère… ce qui est infaisable sur une photo ! D’autre part, avoir un spécimen conservé en herbier permet d’avoir une preuve réelle de l’existence d’une espèce : on sait qu’on a bien un spécimen correspondant à une espèce en particulier, stocké quelque part dans un herbier. D’où l’intérêt d’avoir tous ces spécimens et tous ces types dans les herbiers, aux quatre coins du monde.

Le travail d’herbier à proprement parler

Un herbier, c’est comme une bibliothèque. Dans une bibliothèque, vous avez plusieurs choix à votre disposition lorsque vous travaillez : lecture, écriture, consultation de documents sur différents médias, discussion avec les bibliothécaires s’il s’agit d’une bibliothèque spécialisée… ce qui est le cas pour un herbier ! Et on y fait exactement ce qu’on peut faire dans une bibliothèque, sauf que les livres sont remplacés par des milliers voire millions de spécimens sur les étagères.

Herbier du MHNH de Paris. Sur la gauche, ce sont des compactus, des armoires mobiles ou les specimens sont stockes sur des etageres. [source]

Ainsi dans un herbier, on peut étudier les spécimens de plusieurs manières, plus ou moins en détail, on peut aussi en prélever certains fragments pour en faire des analyses ADN (si si je vous assure, ça fonctionne bien ! c’est juste un peu long. Et le prélèvement sur les specimens types est très sévèrement contrôlé, voire dans la plupart des cas, interdit), on peut réhydrater certaines parties pour mieux les étudier « en 3D » (les fleurs en particulier supportent mal le passage sous presse), on peut également redécrire un spécimen mal identifié ou même décrire une nouvelle espèce !

Alors maintenant, je vais vous parler de ce que je fais, dans le cadre de mon doctorat. Pas forcément de mon sujet de recherche en entier (et ça, je saurais de quoi il retourne quand ma thèse sera écrite et pas avant) mais de ce que je réalise lorsque je suis à l’herbier.

Au commencement fut… le spécimen

Le but de la manœuvre ici était d’assigner un nom d’espèce aux différents spécimens qui n’en portaient pas. En effet, dans toute grande collection d’herbier, certains spécimens ont juste été identifiés par le nom de genre mais pas par le nom d’espèce, par manque de temps ou par manque de connaissances sur lesdites espèces.

Ma tâche a été facilitée ici par le fait qu’au Brésil se trouvent seulement six espèces du genre Crudia (sur lequel je travaille), qui en compte une cinquantaine, réparties en Afrique, Amérique du Sud et Asie du Sud Est. Donc je suis chanceux, je n’ai à faire de différence « que » entre six espèces. Voici ma méthode opératoire : je commence par prendre des notes sur chaque spécimen que j’ai sous les yeux, de manière à brosser la diversité morphologique présente au sens de chaque espèce… mais aussi de chaque spécimen, car il existe une variation morphologique importante. Tout particulièrement, les espèces étudiées ici sont très proches morphologiquement et ont souvent des fleurs identiques. Or, ce qui est le plus utile en général en botanique, c’est de regarder les caractères portés par les fleurs pour distinguer les espèces entre elles. Ici, pas de chance, c’est difficilement faisable. Il est donc essentiel de se concentrer sur d’autres caractères, et c’est là qu’entre en jeu l’œil affuté du taxonomiste : je me concentre sur les caractères foliaires (c'est-à-dire les caractères portés par les feuilles) ! Ici, particulièrement sur la forme des folioles (qui sont une sous-division des feuilles lorsqu’elles sont composées) et leur aspect (poilues ou non). Oui mais voilà, parfois, ça ne marche pas ! Et je ne peux pas trancher entre deux espèces. Alors je regarde d’autres caractères portés par les fruits cette fois ci. En combinant les caractères des feuilles et des fruits, je suis capable de rattacher un spécimen à une espèce ou une autre… la plupart du temps. Car oui parfois, il faut bien savoir s’avouer vaincu !       

A : Crudia aequalis, B : Crudia amazonica, C : Crudia bracteata, D : Crudia glaberrima, E : Crudia oblonga, F : Crudia tomentosa[source]
Non seulement il est possible d’assigner un nom d’espèce à un spécimen qui n’en avait pas encore, mais il est aussi possible de revoir le travail des chercheurs précédents qui peuvent avoir fait des erreurs. C’est en cela qu’un herbier n’est pas une grosse collection de plantes mortes stockées sur les étagères : c’est une bibliothèque en constante évolution au gré des nouvelles classifications, des nouvelles espèces découvertes et des révisions taxonomiques.

De telles bibliothèques sont réparties à travers le monde et ont chacune des collections de référence, la plupart du temps lié à un passé historique spécifique. Ainsi, les herbiers des Pays-Bas possèdent de nombreux spécimens rapportés d’Asie lors de la période coloniale, de même que les herbiers de France possèdent de nombreux spécimens africains. Les herbiers des pays du Nord possèdent en général une gamme étendue de spécimens anciens venant du monde entier tandis que les herbiers des pays du Sud ou émergents possèdent des spécimens récents provenant souvent du pays même où se situe l’herbier. Il faut donc choisir les endroits où l’on va étudier en fonction des objectifs de recherche que l’on s’est fixé !

La prochaine fois, je vous parlerai du travail réalisé à l’herbier de Belém, qui est ma prochaine destination. J’espère y trouver au moins autant sinon plus de spécimens qu’à Rio et je vous présenterai un autre type de travail qui peut être réalisé sur les spécimens à disposition.
Et en bonus, voici à quoi ça ressemble, un environnement de travail à l’herbier.

Un plan de travail comprend, en général, une loupe binoculaire avec un système d’éclairage, de la place pour étaler les spécimens et parfois un ordinateur (comme c’est le cas ici)


Pour prendre des photos détaillées, on utilise en général un pied pour fixer l’objectif afin d’avoir toujours le même angle de vue. Parfois, il s’avère qu’un tel dispositif ne soit pas disponible alors il faut savoir improviser avec les moyens du bord !

Boris

Trois utilités insolites des parasites

$
0
0
Les parasites, ça va un peu plus loin que ces bestioles douteuses qui suintent du derrière de matou qu’on a oublié de vermifuger. Ça va au-delà aussi de ces étranges moumoutes sur pattes qui sont venues à bout de votre bonsaï favori. Les parasites constituent un empire, quelque chose comme la moitié des êtres vivants de la planète, qui plus est capables d’infecter presque tous les autres. Une source quasi inépuisable d’idées, d’innovations, de détournements possibles pour les humains… Vous voulez quelques exemples ? Voici trois utilités originales que les humains ont trouvées aux parasites. 


Des vers solitaires pour maigrir ? Si cette affiche est probablement fausse, il semble tout de même que l’idée ait été propagée au début des années 1900 (Source)


Identifier des cadavres


Du côté des médecins légistes et de la police scientifique, les parasites ne se retrouvent pas seulement sur le banc des accusés. A l’heure actuelle, la mobilité des humains n’a jamais été aussi importante. Les hommes ont la bougeotte, ils ne tiennent pas en place. Aussi, quand une catastrophe quelconque (catastrophe naturelle, crime, accident…) en décime, les autorités sont confrontées au problème de l’identification des corps. Malheureusement, les victimes ne portent pas toujours sur elles de quoi donner des pistes. Plusieurs méthodes existent alors, telles que la reconnaissance des empreintes digitales ou l’utilisation de l’ADN. Ces méthodes efficaces nécessitent cependant des points de comparaison : on ne peut reconnaître une empreinte, digitale ou génétique, si l’on n’a pas un échantillon connu avec cette même empreinte. C’est à ce moment que les parasites entrent sur la scène d’investigation. 

Utiliser les parasites ne permet pas (encore) d’identifier formellement une personne, mais donne une approximation de sa provenance géographique, ce qui facilite ensuite l’identification plus formelle. La méthode est très simple : elle part du principe que certains parasites se retrouvent à peu près partout dans le monde, mais avec des différences génétiques propres à certaines régions. 

Prenons le virus JC. Ce virus infecte grosso-modo un tiers des personnes, généralement durant l’enfance. Il persiste ensuite chez l’adulte, où on le retrouve notamment au niveau des reins et dans l’urine. Plusieurs génotypes de ce virus (des types génétiques) existent, et sont différents selon les régions du monde. Ces particularités font que ce virus est d’ores et déjà utilisé par la police pour cibler les régions d’origine des corps à identifier. Il suffit de prélever, chez la victime, un échantillon d’urine ou de rein. A l’aide d’un dispositif portatif qui permet d’identifier le type du virus, on en déduit alors son origine géographique, et donc celle de la victime. Et le tout ne prend pas plus de quatre heures. Très pratique dans des cas de cataclysmes, ou beaucoup de corps doivent être identifiés rapidement et sur place, et sans beaucoup d’indices préalables. Ikegawa (2008) vante dans un article les mérites de cette méthode : cadavres pas très frais ou brulés ne modifient pas la détectabilité du virus. De plus, contrairement aux méthodes basées sur des analyses des caractéristiques de l’ADN, on remonte à un lieu géographique où la personne a grandi, et non son origine ancestrale : un américain dont les parents sont français sera ainsi reconnu comme venant d’Amérique. D’autres parasites sont également candidats dans les cas où la victime n’est pas infectée par ce virus. 


Je ne pouvais décemment pas vous mettre de vraie photo de cadavre… (Crédits : 20th Century Fox)


Attraper des souris 


En Nouvelle-Zélande, comme dans beaucoup d’autres pays, la prolifération des rongeurs nuisibles est un problème majeur. Les rats notamment, introduits par les humains, sont responsables du déclin et de la disparition de nombreuses espèces endémiques. Sans prédateurs adéquats pour réguler leur population (il y a bien les chats, eux aussi introduits…), les rats sont particulièrement difficiles à contrôler. A l’heure actuelle, les méthodes pour réduire leur population sans affecter celle des autres espèces (pas question d’empoisonner tout un écosystème) sont globalement basées sur de simples captures, à l’aide de pièges. Cette méthode fastidieuse est entièrement dépendante du succès de capture de ces pièges, ainsi que de la motivation des humains à les poser et les relever. Question motivation, il y a bien quelques initiatives, comme des primes pour les rats capturés. Ainsi, les étudiants sont incités à participer aux opérations, en échange de bières pour chaque rat capturé ! Mais question succès de capture, ce sont les rats qu’il faudrait motiver : les pièges fonctionnent par l’entrée volontaire de l’animal dans le dispositif… 


Le kakapo, perroquet endémique de Nouvelle-Zélande, ne doit son salut qu’à des efforts soutenus de conservation. L’arrivée sur l’île de prédateurs comme le rat l’a fait frôler l’extinction. D’autres espèces n’ont pas pu être préservées à temps… (Crédits : Mnolf)


La question se pose alors : comment faire en sorte que les rats adoptent une plus grande tendance à entrer dans les pièges ? Comment faire en sorte que, contrairement à leur instinct qui leur dicte de se méfier de la nouveauté, les rats sautent de leur plein grès vers leur fin… Comment modifier leur comportement pour leur faire faire des actions qui vont à l’encontre de leur instinct de survie… Une idée ? 

Éparpillés dans la nature, invisibles et presque inconnus des humains, existent des êtres qui ont ce pouvoir, celui de modifier les comportements d’animaux et les rendre quelque peu suicidaires… : les parasites manipulateurs. Si ce nom ne vous dit rien, je leur avais consacré un long article (par ici). Parmi les parasites manipulateurs, il en est un qui est particulièrement connu, notamment puisqu’il affecte l’humain : Toxoplasma gondii (responsable de la toxoplasmose, vous l’aurez deviné). Ce parasite a pour hôtes successifs des rongeurs et des carnivores, notamment des chats. Pour passer de l’un à l’autre, il utilise la transmission trophique : la souris devra se faire dévorer par le chat. Le parasite a développé la capacité d’altérer les comportements de ses hôtes rongeurs, de sorte que ceux-ci soient beaucoup plus enclins à s’approcher de leur ennemi… au point même qu’il a été montré que certains sont attirés par l’odeur de leurs prédateurs. Une légende (permettez-moi de souligner légende) prétend même que les humains se font aussi manipuler, et que la présence de T. gondii dans notre pauvre cerveau serait responsable de notre amour inconditionné pour les chats (et même que ça serait pour ça qu’ils sont les maîtres incontestables du web !). 


Le rat, une des terreurs de beaucoup d’écosystèmes quand il est introduit. De nombreuses actions sont entreprises pour tenter de limiter leur population, et leur impact (Crédits et infos)


Laissons les légendes de côté pour retourner vers de ce qu’on connaît vraiment. Dans une étude très récemment publiée, Tompkins et Veltman (2015) proposent que T. gondii soit, pour une fois, du côté des humains. Ce parasite, présent à peu près partout, n’affecte pas seulement les préférences olfactives des rongeurs, mais également leur néophobie. D’ordinaire méfiants vis-à-vis de la nouveauté, les rats laissent parler leur curiosité lorsqu’ils sont infectés, et n’hésitent plus à s’approcher des objets dangereux. A tel point que les auteurs reportent une augmentation de 75% du succès de capture de rats par des pièges ! Selon eux, à prévalence suffisante (c'est-à-dire si la population de rats est suffisamment infectée par le parasite), les modifications comportementales des rats pourraient permettre de réduire considérablement les efforts humains tout en maintenant leur population à un seuil acceptable. Une étude qui pourrait d’ailleurs inspirer bien d’autres applications utiles aux nombreux parasites manipulateurs connus ! 


Compter des espèces invisibles 


Les parasites bénéficient d’une relation très intime avec la biodiversité. Cela peut paraître contre-intuitif du fait de l’image négative que nous en avons, mais un écosystème riche en parasites est généralement un écosystème qui se porte très bien. En cause, le lien qu’entretiennent les parasites avec leurs hôtes, et notamment les parasites spécialistes. Ces derniers ont des préférences vitales pour des espèces d’hôtes très particulières. Autrement dit, sans la présence d’une de ces espèces d’hôtes, ils disparaissent. D’ailleurs, on n’y pense pas forcément, mais les parasites font partie des grandes victimes d’extinctions secondaires : la disparition initiale de leurs hôtes entraîne la disparition des espèces qui en dépendent, les parasites se situant en toute première ligne. 


Petit micmac d’helminthes (Crédits : SusanA Secretariat)


Le lien parfois étroit entre la biodiversité des parasites et celle de leurs hôtes fait de nos sujets de bons bio-indicateurs (Hatcher et al. 2012). Parfois, il est en effet plus facile d’estimer, dans un écosystème, la diversité parasitaire. C’est notamment le cas lorsque l’on veut faire un suivi d’espèces qui sont l’un des multiples hôtes de parasites. Prenons le cas (purement fictif) des parasites évoqués ci-dessus : si les différents rongeurs étaient infectés par des parasites spécialistes (donc une espèce de rongeur pour chaque espèce de parasite), et non spécialistes comme c’est le cas (un seul parasite infecte toute une myriade d’espèces de rongeurs), il suffirait alors d’attraper l’hôte définitif (pour les besoins de l’article, nous allons sacrifier un chat, mais pas de panique, ce n’est que fictif !). Le prédateur a consommé plein de rongeurs et en a gardé une trace : leurs parasites. Il suffirait alors d’aller voir ce que contient matou pour en déduire grosso-modo la composition de son régime, et donc celle de la population des rongeurs des environs ! 

Et tout ça n’est pas que de la fiction. Les parasites peuvent ainsi servir à estimer les effets de pesticides par exemple : la diversité en parasitoïdes (ces bestioles qui ont tendance à pondre dans d’autres, et sont donc parasites durant leur développement) étant corrélée avec celle de leurs hôtes arthropodes, la quantité de l’une informe des effets des pesticides sur les autres (Anderson et al. 2011). Et ce n’est pas tout, les parasites tous seuls peuvent aussi permettre d’estimer la santé des milieux : beaucoup d’helminthes (un mot pas beau qui regroupe pas mal de parasites de bonne taille comme les trématodes, acanthocéphales, etc.) sont connus pour accumuler les métaux lourds. En dehors d’un rôle de purificateur en métaux lourds qui pourrait s’avérer bénéfique pour les hôtes parasités (seulement en milieu pollué, sinon c’est jamais tip top d’être infecté), les parasites peuvent alors servir de sentinelles pour mesurer la pollution (Dobson et al. 2008). 


Parmi les helminthes, on trouve les acanthocéphales. Ces derniers sont aussi de bons accumulateurs de métaux lourds, comme le plomb. Crédits : Sophie Labaude


La liste des utilités des parasites ne s’arrête pas là, elle ne fait que commencer. Leurs multiples rôles au sein des écosystèmes a fait l’objet de dizaines d’articles, et c’est malgré leur réputation qu’ils s’affirment comme des acteurs indispensables de la biodiversité. Côté détournement, la liste est également loin d’être exhaustive. Rappelez-vous, je vous avais déjà parlé d’un pansement révolutionnaire directement inspiré des grands maitres de la manipulation, les parasites acanthocéphales. Mais il y a un domaine où les parasites s’illustrent particulièrement, où ils n’ont pas à cacher leurs mœurs parfois diaboliques et leurs bouilles qui font rarement partie de ces bêtes qu’on qualifie de mignonnes : les créatures bizarres, ça a toujours fasciné les professionnels du grand écran, et son public ! 


Alien, cette créature qui affole l’imagination pourrait avoir été inspirée de guêpes parasitoïdes… (Crédits : 20th Century-Fox)



Bibliographie 


Anderson, A., McCormack, S., Helden, A., Sheridan, H., Kinsella, A. & Purvis, G. 2011. The potential of parasitoid Hymenoptera as bioindicators of arthropod diversity in agricultural grasslands. Journal of Applied Ecology, 48, 382-390. 

Dobson A., Lafferty, K.D., Kuris, A.M., Hechinger, R.F. & Jetz, W. 2008. Homage to Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy of Sciences, 105, 11482-11489. 

Hatcher, M.J., Dick, J.T.A. & Dunn, A.M. 2012. Diverse effects of parasites in ecosystems: linking interdependent processes. Frontiers in Ecology and the Environment, 10, 186-194. 

Ikegaya, H. 2008. Geographical identification of cadavers by human parasites. Forensic Science International: Genetics, 2, 83-90. 

Tompkins, D.M. & Veltman, C.J. 2015. Behaviour-manipulating parasites as adjuncts to vertebrate pest control. Ecological Modelling, 302, 1–8.



Sophie Labaude

Aventures brésiliennes – A la découverte de l’Amazonie

$
0
0
Salut tout le monde ! Voici le second article qui parle de mon périple scientifique au Brésil (si vous n’avez pas lu le premier, c’est ici que ça se passe).
Après mon travail à l’herbier de Rio de Janeiro, je suis parti réaliser un travail similaire dans les herbiers de Belém. Là encore, de nombreux spécimens de la région et surtout, provenant de collectes locales.
Comme il s’agit du même travail qu’à Rio, je ne vais pas m’attarder dessus. Après Belem, je suis allé rejoindre d’autres chercheurs à Manaus… pour aller collecter des plantes au cœur de l’Amazonie.

Voilà. C'est la forêt. Plutôt chouette comme environnement de travail non ? 
Cet article va donc vous présenter le travail de terrain réalisé dans la forêt amazonienne. Mais d’abord, pourquoi aller échantillonner ? Le but ici, était de récolter les plantes du genre Crudia, afin d’avoir accès à du matériel « frais » c'est-à-dire non issu d’échantillons d’herbier. Pourquoi ? Eh bien je m’intéresse à développer des marqueurs moléculaires et pour ça, il me faut de l’ADN de bonne qualité. Pas de panique, j’explique. Pour étudier l’évolution des organismes et les relations de parenté qui existent entre eux, on réalise ce qu’on appelle des arbres phylogénétiques. Je ne vais pas re-décrire tout le principe en détail, c’est très bien expliqué là (autre lien vers un autre article du blog). Pour obtenir ces arbres, il est nécessaire d’utiliser des caractères, moléculaires ou morphologiques. Dans mon cas, les espèces du genre Crudia sont morphologiquement très proches et il est difficile de trouver des caractères assez variables pouvant être utilisés pour reconstruire les arbres. Je me suis donc tourné vers l’utilisation de caractères provenant des séquences d’ADN, nécessitant l’utilisation de marqueurs (voilà, on y arrive !). En biologie moléculaire, en tout cas en phylogénie, ce qu’on désigne par « marqueur » est une portion du génome. Peu importe la localisation dans le génome, ce qui nous intéresse ici n’est pas la fonction de cette portion d’ADN mais sa séquence d’ADN. Une fois cette séquence récupérée (par tout un tas de manipulations de laboratoires dont je vous fais grâce), on peut la comparer à d’autres, et en faisant ainsi, reconstruire les liens de parentés entre les êtres vivants. Jusqu’à maintenant, j’ai utilisé l’ADN récolté sur des échantillons d’herbier, car je n’ai pas eu l’occasion d’aller sur le terrain. Sauf que le problème, c’est que cet ADN est souvent dégradé ou altéré par un mauvais conditionnement (traitement par des produits conservateurs, chauffage excessif, insecticides, etc). Et il est difficile de travailler sur cet ADN pour développer de nouvelles techniques d’études. Une solution à cela est de travailler avec du matériel provenant d’échantillons « frais », qui n’ont pas ou peu été altérés par les processus de conservation et qui permettent d’obtenir de l’ADN de meilleure qualité. Et un moyen infaillible d’avoir accès à du matériel frais… c’est d’aller le chercher soit même. C’est pour cette raison que je suis parti faire du terrain en Amazonie. 

Collecte dans la Reserva Ducke

Les trois premiers jours de travail de terrain ont été menés dans la Reserva Ducke.

La reserva Ducke, c'est le gros carré vert pointé par la flèche rouge. [Source : GoogleMaps]

Cette réserve a été créée officiellement en 1959 suite à la demande d’Adolpho Ducke, qui avait repéré le potentiel de cette zone dès 1955. C’est un carré de 10 km par 10 km, qui renferme une zone de forêt humide sur terre ferme (littéralement, « floresta tropical úmida de terra firme » en portugais), ce qui signifie concrètement que les arbres n’ont jamais les pieds dans l’eau. De nombreuses études sont menées dans cette forêt et un grand nombre d’arbres et de plantes sont connus et référencés sur une carte, avec un numéro. Ce qui est bien pratique lorsqu’on cherche une espèce en particulier, comme c’est notre cas ici. 
L’équipe de travail était composé de Gleison, notre guide et grimpeur, Rafael, étudiant au doctorat, Giulia, étudiant en seconde année d’université en biologie, et moi-même. Alors, comment se déroule une journée de collecte sur le terrain ? C’est bien simple : on marche. Et on ouvre grands ses yeux pour ne rien louper, surtout pas les plantes qui nous intéressent ! Dans notre cas, une difficulté supplémentaire s’ajoute à notre recherche : les plantes que nous cherchons sont des arbres, entre 20 et 30 mètres de haut, avec les premières branches au-delà de 15 mètres. C’est pour cette raison que nous avions avec nous un guide grimpeur, qui allait chercher les branches à plus de 20 mètres de haut. Sans filet. La preuve.

Montée...

Coupage de branches (si si, il est là, cherchez bien !)...

Et descente ! 
Pendant que notre guide coupe les branches en hauteur, on ne reste pas inactif, au sol. Giulia cherche des plantules (= des jeunes arbres, de quelques dizaines de centimètres de haut), pour en étudier les racines, plus tard, en laboratoire, et en décrire le nombre de chromosomes. Je l’aide à déterrer les jeunes pousses. On cherche également à collecter des fruits pas trop abîmés par les décomposeurs du sol (=tous les arthropodes, champignons, qui se chargent de dégrader la matière organique), pour pouvoir réaliser des germinations en laboratoire (encore très pratique pour étudier les racines, par exemple). Une fois que les branches coupées par Gleison sont redescendues au sol, Rafael vérifie que ce sont bien les bonnes espèces qui ont été récoltées. Avoir des branches portant des fleurs est bien sûr un bonus si l’on veut identifier les espèces plus facilement, car je rappelle qu’en général, les descriptions d’espèces se basent surtout sur la morphologie des fleurs. Ensuite, chaque branche provenant du même arbre est mise dans un grand sac plastique, ce qui permet non seulement de faciliter le transport mais aussi de ne pas se mélanger entre les récoltes.
Voici quelques photos prises durant la journée, et qui montrent l’équipe à l’œuvre et l’environnement de forêt tropicale humide :

Au départ de notre collecte.

Les plantules prélevées...

... par Guilia...

... qui cherche avant tout des racines. Réussi !

Rafael identifie avec certitude les branches coupées par Gleison.

Pause photo !
Le soir venu, repos bien mérité ? Que nenni ! Il faut d’abord noter soigneusement quelles plantes ont été récoltées dans la journée, et surtout leur attribuer un numéro de collecte, qui nécessite une autorisation et un permis, déposé auprès des instances scientifiques brésiliennes. C’est Rafael qui se charge d’attribuer un tel numéro à chaque spécimen. Ensuite, les branches, feuilles, fleurs, fruits, sont mis sous presse provisoire (une petite presse mobile de voyage) pour y être conservés, avant d’être séchés une fois revenu au laboratoire. Mais ce n’est pas tout. Afin de conserver certaines parties des spécimens pour des études sur l’ADN, on utilise du Silicagel, ou gel de silice en bon français. On en trouve sous forme de petits sachets de perles transparentes dans les boites à chaussures. En recherche, on achète ces cristaux par seaux entiers. Cela permet de déshydrater les échantillons de feuilles en une journée tout au plus, sans utiliser de produits conservateurs, parce que les produits conservateurs ont en général un impact sur la qualité de l’ADN qui pourra être utilisé plus tard. 

Préparation de la presse.

Comment bien aplatir les rameaux à conserver. [Source : R.B. Pinto] 

Taille relative des fruits et d'une plantule de Hymenea. [Source : R.B. Pinto]

Un botaniste heureux. [Source : R.B. Pinto]
Et en petit bonus, une vidéo de la forêt, le soir, une fois revenu au camp. 


Une fois revenu au laboratoire, les échantillons sont mis sous presse et au séchoir. Il est vital de bien réaliser cette étape afin d’éviter tout problème de champignons, qui pourraient venir s’attaquer aux plantes coupées et les dégrader, spécialement dans des environnements tropicaux. En effet, à cause de l’humidité, dès que les plantes sont coupées, elles sont la proie des champignons. Un séchage rapide après la récolte garantit une meilleure conservation.

Les plantes sont pressées entre des planches de cartons, d'aluminium et de papier journal... [Source : G. Melilli]

... puis elles sont mises à sécher au dessus de lampes très chaudes. [Source : G. Melilli]
En bonus, des trucs archi cool aperçus dans la forêt :

Une chenille.

Une liane avec une forme trop cool.

Heliconia sp.

Un palmier en fruits.

Une fourmilière... ou termitière. Je ne suis pas allé mettre les doigts pour vérifier.

Une Angiosperme parasite !

Une résine qui sent trop bon quand on la fait brûler.

Un insecte qui pue. Surement un Coléoptère.

Un insecte qui mange une fourmis. Peut être une punaise.

Un joli papillon.

Probablement Calliandra sp.

Une vieille feuille (gauche) et une jeune feuille (droite) sur la même plante. La couleur plus foncée est due à la présence de composés secondaires protecteurs contre les UVs et les phytophages.

Une Annonaceae, probablement Guatteria sp.

Un insecte non identifié.

Une mini mini grenouille.

Une mante religieuse-feuille.

Hymenolobium sp. est un des plus grands arbres de la Reserva.

Swartzia sp.

Et pour finir, un toucan ! [Source : R.B. Pinto]

Collecte à Tupé

Après deux jours de repos, nous repartons pour une autre région de l’Amazonie, très différente de la zone de terre ferme où nous avons travaillé. En effet, il s’agit d’un environnement de type « igapò », qui désigne les zones de rivière bordées par le Rio Negro. Un point important à souligner ici : le Rio Negro est un affluent de l’Amazone, et comme son nom l’indique, les eaux de cette rivières sont noires et légèrement acides (attention hein, acide ne veut pas dire dangereux au point de faire fondre la coque des bateaux, c’est seulement que le pH se situe légèrement en dessous de 7). Et ça tombe vraiment bien pour nous, parce que les moustiques ne se développent pas dans les eaux acides… ça, ça nous facilite la tâche (parce que faire du terrain avec des bourdonnements continus dans les oreilles c’est vraiment désagréable croyez-moi). 

Pour vous donner une idée de l'environnement, voilà à quoi ça ressemble :

Le bateau à droite, c'est notre taxi.
En bateau en train de chercher des plantes.



Alors, comment s’organise une collecte de terrain dans un environnement proche de l’eau ? Tout d’abord, à la différence de la Reserva Ducke, nous n’allons pas dans un endroit spécifiquement réservé aux scientifiques, mais nous allons être hébergés chez des habitants locaux. De plus, le mode de déplacement privilégié est le bateau, même si c’est actuellement la saison sèche et que les eaux du fleuve sont au plus bas. Alors on laisse tomber les grosses bottes de marche, on enfile son maillot et on n’oublie pas ses sandales !
Le premier jour, la collecte se déroule de la façon suivante : nous scrutons le rivage depuis le bateau, parfois à l’œil nu, parfois à l’aide du zoom d’un bon appareil photo, parfois à l’aide de jumelles, pour reconnaître de loin les arbres qui semblent correspondre aux espèces recherchées. Car oui, ici, par de carte précise avec l’emplacement que chaque arbre, il faut chercher. Quand on cherche, on finit par trouver ! Une espèce de Crudia se trouvait non loin de la rivière. Oui, une seule espèce ça peut paraître peu, mais quand on a pour objectif de trouver un arbre précis dans ce type d’environnement, je vous assure que c’est assez proche de chercher une aiguille dans une botte de foin avec un bandeau sur les yeux et des moufles aux mains.

Petite parenthèse ici, concernant un fait remarquable observé chez toutes ces plantes proches des rivières et affluents de l’Amazone. Il faut savoir qu’ici, sous l’équateur, la température reste constante toute l’année, mais c’est la pluviométrie qui change beaucoup.

Variation de la pluviométrie et du niveau du fleuve au cours d'une année. [Source : Parolin 2009]
Le niveau du fleuve peut varier de 10 mètres en hauteur ! C’est à peu près la hauteur d’un immeuble de trois étages, pour vous donner une idée, ou bien la longueur d’un autobus. Et donc, pendant la saison des pluies, les arbres se retrouvent… les pieds dans l’eau. Et souvent même bien plus que les pieds ! Certains ont même le feuillage submergé… pendant plusieurs mois ! Il existe alors tout un tas d’adaptations morphologiques permettant à ces plantes de survire sous l’eau et même de tirer parti de cette submersion forcée. En effet, sous l’eau, il n’y a pas d’oxygène gazeux donc les racines de la plante sont en situation d’anoxie (absence totale d’oxygène. On pourrait penser que si on empêche un être vivant de respirer … il meurt. Mais pas toujours, et particulièrement, pas ici. Les plantes modifient à la fois leur métabolisme (entrée en dormance, utilisation des sucres stockés dans les racines pendant la période sèche) et leur morphologie (formation d’aérenchyme, un tissus très spongieux permettant aux gaz de circuler par diffusion plus efficacement dans certaines parties de la plante). Je ne vais pas lister tous les changements que subissent ces plantes, ça pourrait faire l’objet d’un article complet, mais si vous voulez plus d’informations sur le sujet vous pouvez consulter l’article de Parolin (2009), et comme c'est en libre accès, en plus c'est parfait.

Fin de la parenthèse, retournons à nos moutons. Enfin à notre collecte. Le soir venu, il faut encore une fois trier, étiqueter les échantillons et prélever ce que nous voulons garder pour conserver dans le Silicagel en vue d’extractions d’ADN futures. Cette fois, le travail se fait à la lampe torche car nous sommes rentrés après la nuit.

Les branches à mettre sous presse sont sélectionnées...
... puis des échantillons de feuilles sont conservés en gel de silice...
... et les échantillons sont enfin mis sous presse.
Le lendemain, encore une journée de collecte, entamée par une jolie pluie tropicale. On n’est pas fous, on a attendu que ça se calme…


Cette fois, la collecte s’est réalisée non pas aux abords directs du fleuve, mais plus profond dans la forêt environnante. Un terrain légèrement différent de ce que nous avions connu la veille, alternant entre une foret de type « terra firme » et des marécages et cours d’eau. Nous avons eu la chance de trouver une autre espèce de Crudia, différente de celle que nous avions trouvée le jour précédent. L’arbre dont nous avons prélevé des branches se trouvait surplombant une cascade (on en a profité pour faire trempette, c’est ça aussi la recherche, faut savoir se ménager de temps à autre). Cette deuxième récolte, assez inespérée, permettra à l’avenir d’avoir plus de données pour mes analyses. En effet, il aurait été possible de travailler sur une seule espèce pour développer des marqueurs moléculaires, mais en ayant deux espèces à disposition, je vais pouvoir prendre en compte la présence de la variabilité qui existe entre les espèces (ou tout du moins, entre ces deux là). 
Voilà, les aventures de terrain c’est fini pour aujourd’hui, et pour un petit moment, car dès à présent je repars vers le sud du Brésil pour assister à un congrès sur la morphologie des Légumineuses et travailler en laboratoire sur les échantillons récoltés au cours de mon périple !

Sources des photos : B. Domenech, excepté lorsque c'est précisé !

Article : Parolin, 2009. Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annals of Botany.


Pétale, mon beau pétale

$
0
0
Linnaeosicyos amara. Derrière ce doux nom se cache une plante plutôt singulière au sein de la grande famille des cucurbitacées (famille célèbre surtout pour ses courgettes, citrouilles et autres courges). Bien que ce groupe contienne près d’un millier d’espèces, L. amara est l’unique représentante de son genre. Elle est de plus une des plus rares cucurbitacées, et endémique des Caraïbes.

Une des particularités les plus étonnantes de cette plante réside dans l’apparence de ses fleurs. Attribut également rare, leurs pétales disposent de franges. Les petites fleurs blanches sont ainsi découpées en une myriade de filaments. En cumulant des dizaines d’heures d’observations, les chercheurs pensent avoir découvert le rôle de cette étrange apparence.


L'apparence tout à fait extra-ordinaire de la fleur en fait un petit bijoux. Crédit : Mitchell et al. 2015.


Comme beaucoup de fleurs, la pollinisation se fait grâce à des insectes. Des papillons sphingidés nocturnes, ou sphinx, semblent être les partenaires privilégiés de la plante. Les chercheurs ont observé que l’extension maximale de ses pétales coïncidait avec le pic de visite des papillons. Ainsi, la plante pourrait avoir trouvé la parade pour présenter aux insectes une surface qui semble large, critère visuellement attractif pour les papillons, tout en s’épargnant l’énergie de devoir développer des pétales complets.


Eumorpha labruscae, l'un des papillons sphinx observés en train de se nourrir sur la fleur, pendant cette étude. Crédit : Charlesjsharp

 

 

Référence :


Mitchell, T.C., Dötterl, S. & Schaefer, H. 2015. Hawk-moth pollination and elaborate petals in Cucurbitaceae: The case of the Caribbean endemic Linnaeosicyos amara. Flora, 216, 50-56.



Sophie Labaude

Qui s’assemble… finit par se ressembler !

$
0
0
Article VIP par l'auteur même du papier publié dans Science advances ! C'est Chloé, auteur invitée exceptionnelle, qui nous raconte sa superbe expérience à l'origine du papier.  


Avez-vous déjà remarqué que les conjoints se ressemblent souvent beaucoup lorsqu’ils se connaissent depuis longtemps ? On a appris récemment que chez l’humain, le système immunitaire des conjoints finit par se ressembler. Mais qu’en est-il de leur comportement ? Cette question fait l’objet d‘un débat en raison de résultats globalement variés. Il faut dire que pour tester ça correctement, il faudrait former arbitrairement des couples composés de partenaires ayant des personnalités contrastées et observer ce qu’ils deviennent. Bref, ça serait pas très éthique… (cela dit ça n’empêche pas des sites de rencontres de se livrer à quelques expériences…) En attendant, la question reste en suspense… chez l’humain ! Mais une étude sur une autre espèce monogame pourrait éclairer cette question d’un jour nouveau. 

L’avantage d’être avec un partenaire similaire a été observé chez de nombreuses espèces monogames où les partenaires se partagent les soins aux jeunes, telles que les mésanges charbonnières ou les diamants mandarins. Chez ces espèces, les partenaires qui se ressemblent sur le plan comportemental se coordonnent de manière plus efficace pour s’occuper de leur progéniture et ont ainsi un meilleur succès reproducteur que les couples dont les partenaires sont différents. Être d’accord sur l’éducation des enfants rend forcément les choses plus simples. Du fait de cet avantage, les individus devraient chercher un partenaire qui leur ressemble pour se mettre en couple. Cette hypothèse est d’ailleurs souvent suggérée pour expliquer la similarité au sein des couples. Néanmoins, trouver un partenaire similaire peut prendre beaucoup (beaucoup, beaucoup) de temps, sans aucune garantie de succès ! Plutôt que de risquer de rester célibataire faute d’avoir trouvé chaussure à son pied, il pourrait être plus efficace pour l’individu de se contenter d’un partenaire disponible même si pas forcément idéal, et de tenter ensuite de s’arranger de la situation…



Le cichlidé zébré, Amatitlania siquia, est un poisson originaire d’Amérique Centrale, très étudié pour ses stratégies de reproduction (on vous en parlait ici). Il forme des couples stables dans lesquels le mâle et la femelle défendent ensemble (et de manière passablement agressive, en témoignent mes doigts attaqués) un territoire sur lequel ils construisent ensuite leur nid (une cavité dans le sol ou sous une pierre) et élèvent leur progéniture. Pour garantir le succès de leur reproduction, les parents ont besoin de défendre efficacement ce nid et leurs jeunes contre les menaces que représentent de plus gros poissons, mais aussi d'autres individus de l’espèce. C’est là qu’intervient la nécessité de coordination : la tâche s’avèrera bien plus difficile si, pendant que madame s’échine à faire décamper le prédateur, monsieur est en train de bercer les œufs. Rien de mieux qu’une attaque synchronisée pour faire déguerpir au plus vite le malotru…


Couple de cichlidés zébrés en train de construire leur nid sous une pierre. La femelle, reconnaissable à sa coloration orangée sur les flancs (à droite) déblaie le nid à l’aide du mâle (à gauche). © Chloé Laubu


Jusqu’à présent, la communauté scientifique des écologistes comportementaux admettait que la similarité au sein des couples découlait d’un choix actif des partenaires, qui s’apparient en suivant la maxime « qui se ressemble s’assemble ». Cependant, les résultats que nous avons publiés pourraient bien compléter cette théorie.

Pour évaluer si des partenaires mal assortis au départ étaient capables de finalement s’accorder, nous avons formé des couples qui étaient composés de partenaires aux profils comportementaux très contrastés ou, au contraire, aux profils comportementaux très similaires. Pour cela, chaque individu avait au préalable passé des tests de comportement : leur agressivité face à un intrus pour défendre leur territoire, leur tendance à explorer un nouvel environnement, ou encore leur crainte face à un aliment nouveau ont ainsi été examinés. Si nous avons « forcé » les individus à se mettre en couple avec des congénères au profil comportemental bien précis, ils avaient tout de même le choix entre plusieurs individus ayant ces mêmes types de profil. Une fois les couples bien formés et installés dans un aquarium privé histoire de leur donner l’intimité nécessaire pour une ponte plus sereine, (24h leur était laissés pour s’approprier les lieux), l’activité de défense du nid face à un intrus était réévaluée pour chaque partenaire, ainsi que leur succès reproducteur (nombre de jeunes et rapidité à se reproduire).


Couple de cichlidés zébrés (à droite) défendant son nid contre un prédateur de leurs œufs (à gauche). © Laubu & Dechaume-Moncharmont


Comme attendu, les couples initialement très similaires ont eu un meilleur succès reproducteur que les couples dépareillés. Mais c’est du côté des couples mal-assortis que le résultat est intriguant. Nous avons en effet montré que les partenaires infortunés parvenaient finalement à s’accorder, adoptant des comportements plus similaires après l’appariement. Mais cette convergence au sein des couples est loin d’être un commun accord : c’est le partenaire le moins agressif qui fait tous les efforts pour s’ajuster à son partenaire agressif. En outre, plus les partenaires avaient convergé, plus leur succès reproducteur était important. Non seulement, ils avaient plus de petits que les couples qui avaient peu convergé, mais ils atteignaient même un nombre de jeunes équivalent à celui des couples initialement similaires. Un résultat qui s’apparente sans doute plus à une flexibilité comportementale qu’à un changement de personnalité, puisque l’intérêt n’est pas d’être agressif en tant que tel, mais surtout d’être similaire à son partenaire.

Voilà donc un résultat qui pourrait rassurer ceux qui ne trouvent pas l’âme sœur ou qui pensent être trop différents de leur partenaire, comme le cichlidé zébré, vous pouvez toujours essayer de converger !


© Chloé Laubu


 

Référence


C. Laubu, F-X. Dechaume-Moncharmont, S. Motreuil, C. Schweitzer. Mismatched partners that achieve post-pairing behavioral similarity improve their reproductive success. Sci. Adv. 2, e1501013 (2016).




Chloé Laubu (avec la complicité de Sophie Labaude)

Stockholm inversé : quand des parasites protègent leurs victimes

$
0
0

Logé bien confortablement dans le corps de sa victime, le parasite patiente. Lentement, il grandit, prend des forces pour le grand saut. Un jour, il tuera son hôte. Mais pas maintenant... 

Les parasites, ces êtres vivants qui se développent aux dépens d’autres, infligent souvent à leurs hôtes des dommages qui peuvent leur être fatals. Certains parasites vont même encore plus loin : ils ont besoin que leur hôte finisse par mourir pour pouvoir eux-mêmes continuer à vivre… Un parasite qui se contente de voler les ressources de son hôte a un clair intérêt à ce que celui-ci reste vivant. Pourtant, c’est du côté des parasites les plus mortels, ceux qui tuent, qu’on observe un étrange phénomène : avant de tourner meurtrier, certains parasites se démènent pour garder leur hôte à l’écart des dangers…





Protection contre les prédateurs


Des parasites qui tournent leurs hôtes en zombie et qui les poussent au suicide, ça vous rappelle quelque chose ? Les parasites manipulateurs (voir mon article détaillé pour faire leur connaissance), quand ils ont fini leur croissance dans leur hôte, poussent celui-ci à prendre des risques inconsidérés : se balader bien en vue des prédateurs, gigoter dans tous les sens pour attirer leur attention, escalader les brins d’herbes pour aller à leur rencontre, et même se diriger irrémédiablement vers l’odeur de carnivores affamés… L’intérêt : quand le pauvre hôte zombifié se sera fait croquer, le parasite élira domicile dans le prédateur, où il pourra fonder sa petite famille.

Avant de « prendre le contrôle » de sa pauvre petite victime, le parasite qui se développe tranquillement est face à une difficulté, et pas des moindres : si son hôte se fait grignoter avant qu’il ait atteint le stade transmissible – ce qui est loin d’être improbable – le parasite ne sera pas capable de s’installer dans le prédateur, et mourra.

Certains de ces parasites manipulateurs ont trouvé la parade : tant qu’ils ne sont pas prêts, ils dictent à leur hôte de rester caché ! C’est le cas de certains acanthocéphales, un groupe de parasites particulièrement enclins à manipuler, qui poussent leurs hôtes (des petites crevettes de rivières qu’on appelle gammares) à fréquenter des endroits exposés aux prédateurs. Lorsque le parasite est encore en développement, le gammare adopte le comportement inverse : il passe beaucoup plus de temps à couvert que ses confrères qui ne sont pas parasités. Un bon moyen de ne pas se faire croquer, quitte à affamer le pauvre gammare.


A gauche, un gammare parasité par des acanthocéphales (Crédits : Sophie Labaude). A droite, un copépode (Crédits : Uwe Kils)


Un autre exemple se situe du côté d’un drôle de petit crustacé, le copépode, qui, infecté par un parasite nématode, devient très actif au point qu’il se fait rapidement repérer des prédateurs. Encore une fois, quand le parasite est en développement, c’est l’inverse qui se produit et l’animal est beaucoup plus calme, plus encore que ses compères qui ne sont pas parasités. Pas de compassion donc, les parasites ne protègent leurs hôtes que pour leur propre intérêt…


Le comportement anti-prédateur des gammares (se cacher sous un refuge…) est plus fort pour ceux qui sont parasités, lorsque le parasite n’a pas fini de se développer. D’après Dianne et al. 2011.



Protection contre d’autres parasites


Plongeons nous à présent dans les entrailles d’un petit rongeur sauvage. On se rendra vite compte que l’animal – tout comme nous d’ailleurs – est loin d’être tout seul dans son corps. Des myriades d’autres organismes pullulent, entre bactéries, virus, protistes, et petits parasites en tous genres. Pourtant, en s’y penchant un peu (voir en laissant des chercheurs expérimentés le faire), on se rend compte d’un étrange pattern : certaines espèces de parasites se retrouvent très rarement simultanément dans le même animal. Bien plus rarement que le voudrait le hasard, considérant la quantité de parasites qui entourent nos rongeurs.


Malgré leur mauvaise réputation, les parasites (même quand ils infectent des campagnols aussi mignons…), omniprésents, sont en fait très importants dans les écosystèmes (Crédits : Dûrzan Cîrano)


Cette exclusion entre parasites peut avoir plusieurs explications. La première, la plus simple, c’est que l’animal ne dispose pas des ressources nécessaires pour abriter simultanément plusieurs de ces parasites : la compétition (pour les nutriments ou la place disponible par exemple) fait alors un gagnant et des perdants, qui ne peuvent se développer.

Autre explication : il pourrait y avoir un phénomène d'immunité croisée. Autrement dit, l'infection par un parasite provoque une réaction immunitaire ciblée, notamment la production de cellules spécifiques, qui pourraient réagir également avec d’autres parasites. A la manière d’un vaccin, l’hôte qui aurait déjà rencontré un parasite serait alors beaucoup plus apte à lutter contre d’autres espèces. Ce phénomène est d’autant plus intéressant qu’il a des conséquences médicales et vétérinaires directes : le traitement (d’humains ou de populations animales) contre un parasite pourrait ainsi provoquer une augmentation d'autres maladies…



Protection… contre les charognards


Présentons un dernier parasite qui prend soin de son hôte… ou du moins de son cadavre. Vous connaissez peut-être le nématode Phasmarhabditis hermaphrodita, un ami des jardiniers puisqu’il est vendu comme traitement anti-limaces. Ces dernières constituent en effet leurs hôtes, et les nématodes se délectent de leurs cadavres, après les avoir achevés par une septicémie critique, autrement dit par une infection de bactéries dans tout leur corps.



Le nématode relâche des bactéries dans le corps de son hôte, et provoque une septicémie mortelle (Source de l'image)


Cependant, le nématode a besoin de temps pour se développer dans le macchabée gluant. Et une limace morte à l’air libre, c’est potentiellement appétissant (si, si…) pour d’autres charognards, et le risque de dessiccation est élevé. Il semble donc que le nématode, avant que la limace ne passe de vie à trépas, lui dicte de s’enterrer dans le sol (au plus grand plaisir des jardiniers d’ailleurs, ça fait moins fouillis), où le parasite aura tout le temps de déguster les cadavres des pauvres mollusques. Leur faire creuser leur propre tombe, fallait y penser !




Références


Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Gaillard, M., Léger, E., Rigaud, T., & Elsa, L. 2011. Protection first then facilitation: a manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution, 65, 2692–2698.

Hafer, N. & Milinski, M. 2016. Inter- and intraspecific conflicts between parasites over host manipulation. Proceedings of the Royal Society B, Biological Sciences, 283, 20152870.

Lafferty, K.D. 2010. Interacting parasites. Science, 330, 187–188.

Pechova, H. & Foltan, P. 2008. The parasitic nematode Phasmarhabditis hermaphrodita defends its slug host from being predated or scavenged by manipulating host spatial behaviour. Behavioural processes, 78, 416–420.



Sophie Labaude

Crabe cherche nouvel oursin pour colocation

$
0
0
Profiter des services des autres est une stratégie payante pour beaucoup d’êtres vivants. Un échange de bons procédés souvent indispensable à leur survie. Au fond des océans, on connaît tous celui de Némo le poisson-clown avec son anémone de maison, protection (presque…) infaillible contre les prédateurs en échange d’un brin d’entretien. D’autres animaux se contentent d’utiliser les ressources de leur hôte sans la courtoisie de cet échange.

Les oursins servent ainsi, parfois à leur insu, de gite et de couvert à nombre d’espèces. Ainsi, l’oursin cœur-rouge Meoma ventricosa abrite entre ses piquants un crabe minuscule, Dissodactylus primitivus. Un habitant pas très sympa, de ce fait qualifié de parasite, puisqu’il n’hésite pas à couper les piquants de l’oursin pour se nourrir (heureusement son régime alimentaire se constitue également de microorganismes). Cette espèce semble avoir la bougeotte, et le changement d’hôte est un phénomène souvent observé. Pour en comprendre les raisons, une équipe de chercheurs est partie s’immerger dans la mer des Caraïbes.




Les chercheurs ont d’abord ramassé les oursins avec leurs crabes, en prenant garde de ne pas les séparer. Chaque « équipe » a été marquée d’une couleur différente : un petit flotteur a été attaché aux oursins (pratique pour les repérer sous l’eau, d’autant qu’ils bougent les fourbes… la preuve !) tandis que les crabes ont eu droit à une pastille colorée, collé sur leur dos avec de la super glue. Des oursins avec leurs crabes ont ensuite été replacées dans le milieu, à proximité les uns des autres, pendant 48h. Cette durée relativement courte permet de limiter des évènements intempestifs, comme la perte du marquage suite à une mue ("Les crabes ne muent pas à une fréquence suffisante pour influencer l'expérience" nous assure Quentin Jossart, qui a participé à l'expérience), ou la disparition des individus par prédation. L’idée était d’observer les mouvements de crabes entre oursins proches. 

Les résultats confirment la mobilité des crabes : près de la moitié des individus ont quitté leur oursin d’origine. Par contre, seulement 6 % de ces déserteurs ont été retrouvés sur un oursin proche ! Tandis que 7 % sont réapparus sur un autre oursin, au même endroit, mais durant une autre expérience plusieurs jours plus tard (plusieurs tests ayant été menés successivement au même endroit). A part une petite tendance des crabes à quitter leur oursin quand il est plus peuplé, difficile de tirer des conclusions. Quant à la destination des autres déserteurs : mystère.




N'est-il pas mignon cet oursin avec son petit flotteur ? (Crédits : Chantal De Ridder)

Les crabes bien logés dans leur oursin d'hôte (Crédits : Chantal De Ridder)

Les chercheurs sont alors passés côté laboratoire, histoire de mieux contrôler les petits fuyards. Dans des aquariums, ils ont placé deux oursins ainsi qu’un nombre déterminé de crabes sur l’un d’eux, et surtout en contrôlant le sexe des petits crustacés. Cette fois les résultats sont probants : ce n’est pas tant le nombre de crabes en tant que tel qui détermine la décision d’un individu à changer d’hôte, mais surtout l’identité de ses colocataires ! Ainsi, un crabe aura beaucoup plus tendance à quitter la résidence s’il n’y a pas de partenaire du sexe opposé. Finalement, c’est encore une fois la même raison qui pousse un individu à agir : la perspective de se reproduire.

Et les crabes disparus pendant la première manip, sait-on ce qui leur est arrivé ? Eh bien oui. Car même dans les aquariums, nombre de crabes déserteurs n’ont pas été retrouvés sur le deuxième oursin. Une seule solution : ils se cachent dans le sable. Les chercheurs ont tout de même voulu en avoir le cœur net, et sont retournés dans la mer pour fouiller près d’un mètre cube de sable, à l’aide d’un aspirateur géant qui filtre les crustacés. Voyez plutôt :




Le résultat bouleverse un tantinet ce que l’on savait de l’espèce : les seuls crabes qui ont été trouvés dans le sable étaient situés directement en dessous d’oursins. Il semble donc qu’ils n’étaient pas en phase de changement d’hôte, comme les chercheurs s’y attendaient, mais qu’au contraire les crustacés vivent en partie dans le sable sous-jacent. D’ailleurs, ce résultat pourrait permettre d’expliquer leur couleur : la carapace blanche des crabes est très bien visible sur l’oursin rouge, où il est protégé grâce aux piquants de ce dernier. En revanche, cette parure blanche constitue un bon camouflage dans le sable.

Ainsi se clôt l’expérience : les crabes utilisent les oursins comme garde-manger et lieu de rencontre. Ils changent d’hôte lorsque celui-ci n’est pas pourvu en partenaires potentiels, mais leur mobilité n’est qu’apparente, puisqu’un crabe qui disparaît n’a pas forcément déménagé : il a peut-être seulement investi le sous-sol de la résidence.

La vie difficile d’un chercheur dans les Caraïbes… (Crédits : Chantal De Ridder)



Référence 


De Bruyn, C., David, B., Motreuil, S., Caulier, G., Jossart, Q. Rigaud, T. & De Ridder, C. 2012. Should I stay or should I go? Causes and dynamics of host desertion by a parasitic crab living on echinoids. Marine Ecology Progress Series, 546, 163-171.


Sophie Labaude
Viewing all 106 articles
Browse latest View live